HybridNet_Demo2 / train.py
josedolot's picture
Upload train.py
794aa23
raw
history blame
15.9 kB
import argparse
import datetime
import os
import traceback
import numpy as np
import torch
from tensorboardX import SummaryWriter
from torch import nn
from torchvision import transforms
from tqdm.autonotebook import tqdm
from val import val
from backbone import HybridNetsBackbone
from hybridnets.loss import FocalLoss
from utils.sync_batchnorm import patch_replication_callback
from utils.utils import replace_w_sync_bn, CustomDataParallel, get_last_weights, init_weights, boolean_string, \
save_checkpoint, DataLoaderX, Params
from hybridnets.dataset import BddDataset
from hybridnets.loss import FocalLossSeg, TverskyLoss
from hybridnets.autoanchor import run_anchor
def get_args():
parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu')
parser.add_argument('-p', '--project', type=str, default='bdd100k', help='Project file that contains parameters')
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone')
parser.add_argument('-n', '--num_workers', type=int, default=12, help='Num_workers of dataloader')
parser.add_argument('-b', '--batch_size', type=int, default=12, help='Number of images per batch among all devices')
parser.add_argument('--freeze_backbone', type=boolean_string, default=False,
help='Freeze encoder and neck (effnet and bifpn)')
parser.add_argument('--freeze_det', type=boolean_string, default=False,
help='Freeze detection head')
parser.add_argument('--freeze_seg', type=boolean_string, default=False,
help='Freeze segmentation head')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--optim', type=str, default='adamw', help='Select optimizer for training, '
'suggest using \'admaw\' until the'
' very final stage then switch to \'sgd\'')
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--val_interval', type=int, default=1, help='Number of epoches between valing phases')
parser.add_argument('--save_interval', type=int, default=500, help='Number of steps between saving')
parser.add_argument('--es_min_delta', type=float, default=0.0,
help='Early stopping\'s parameter: minimum change loss to qualify as an improvement')
parser.add_argument('--es_patience', type=int, default=0,
help='Early stopping\'s parameter: number of epochs with no improvement after which '
'training will be stopped. Set to 0 to disable this technique')
parser.add_argument('--data_path', type=str, default='datasets/', help='The root folder of dataset')
parser.add_argument('--log_path', type=str, default='checkpoints/')
parser.add_argument('-w', '--load_weights', type=str, default=None,
help='Whether to load weights from a checkpoint, set None to initialize,'
'set \'last\' to load last checkpoint')
parser.add_argument('--saved_path', type=str, default='checkpoints/')
parser.add_argument('--debug', type=boolean_string, default=False,
help='Whether visualize the predicted boxes of training, '
'the output images will be in test/')
parser.add_argument('--cal_map', type=boolean_string, default=True,
help='Calculate mAP in validation')
parser.add_argument('-v', '--verbose', type=boolean_string, default=True,
help='Whether to print results per class when valing')
parser.add_argument('--plots', type=boolean_string, default=True,
help='Whether to plot confusion matrix when valing')
parser.add_argument('--num_gpus', type=int, default=1,
help='Number of GPUs to be used (0 to use CPU)')
args = parser.parse_args()
return args
class ModelWithLoss(nn.Module):
def __init__(self, model, debug=False):
super().__init__()
self.criterion = FocalLoss()
self.seg_criterion1 = TverskyLoss(mode='multilabel', alpha=0.7, beta=0.3, gamma=4.0 / 3, from_logits=False)
self.seg_criterion2 = FocalLossSeg(mode='multilabel', alpha=0.25)
self.model = model
self.debug = debug
def forward(self, imgs, annotations, seg_annot, obj_list=None):
_, regression, classification, anchors, segmentation = self.model(imgs)
if self.debug:
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations,
imgs=imgs, obj_list=obj_list)
tversky_loss = self.seg_criterion1(segmentation, seg_annot)
focal_loss = self.seg_criterion2(segmentation, seg_annot)
else:
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations)
tversky_loss = self.seg_criterion1(segmentation, seg_annot)
focal_loss = self.seg_criterion2(segmentation, seg_annot)
# Visualization
# seg_0 = seg_annot[0]
# # print('bbb', seg_0.shape)
# seg_0 = torch.argmax(seg_0, dim = 0)
# # print('before', seg_0.shape)
# seg_0 = seg_0.cpu().numpy()
# #.transpose(1, 2, 0)
# print(seg_0.shape)
#
# anh = np.zeros((384,640,3))
#
# anh[seg_0 == 0] = (255,0,0)
# anh[seg_0 == 1] = (0,255,0)
# anh[seg_0 == 2] = (0,0,255)
#
# anh = np.uint8(anh)
#
# cv2.imwrite('anh.jpg',anh)
seg_loss = tversky_loss + 1 * focal_loss
# print("TVERSKY", tversky_loss)
# print("FOCAL", focal_loss)
return cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation
def train(opt):
params = Params(f'projects/{opt.project}.yml')
if opt.num_gpus == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
opt.saved_path = opt.saved_path + f'/{params.project_name}/'
opt.log_path = opt.log_path + f'/{params.project_name}/tensorboard/'
os.makedirs(opt.log_path, exist_ok=True)
os.makedirs(opt.saved_path, exist_ok=True)
train_dataset = BddDataset(
params=params,
is_train=True,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
])
)
training_generator = DataLoaderX(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
valid_dataset = BddDataset(
params=params,
is_train=False,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
])
)
val_generator = DataLoaderX(
valid_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
if params.need_autoanchor:
params.anchors_scales, params.anchors_ratios = run_anchor(None, train_dataset)
model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=opt.compound_coef,
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
seg_classes=len(params.seg_list))
# load last weights
ckpt = {}
# last_step = None
if opt.load_weights:
if opt.load_weights.endswith('.pth'):
weights_path = opt.load_weights
else:
weights_path = get_last_weights(opt.saved_path)
# try:
# last_step = int(os.path.basename(weights_path).split('_')[-1].split('.')[0])
# except:
# last_step = 0
try:
ckpt = torch.load(weights_path)
model.load_state_dict(ckpt.get('model', ckpt), strict=False)
except RuntimeError as e:
print(f'[Warning] Ignoring {e}')
print(
'[Warning] Don\'t panic if you see this, this might be because you load a pretrained weights with different number of classes. The rest of the weights should be loaded already.')
else:
print('[Info] initializing weights...')
init_weights(model)
print('[Info] Successfully!!!')
if opt.freeze_backbone:
def freeze_backbone(m):
classname = m.__class__.__name__
if classname in ['EfficientNetEncoder', 'BiFPN']: # replace backbone classname when using another backbone
print("[Info] freezing {}".format(classname))
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_backbone)
print('[Info] freezed backbone')
if opt.freeze_det:
def freeze_det(m):
classname = m.__class__.__name__
if classname in ['Regressor', 'Classifier', 'Anchors']:
print("[Info] freezing {}".format(classname))
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_det)
print('[Info] freezed detection head')
if opt.freeze_seg:
def freeze_seg(m):
classname = m.__class__.__name__
if classname in ['BiFPNDecoder', 'SegmentationHead']:
print("[Info] freezing {}".format(classname))
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_seg)
print('[Info] freezed segmentation head')
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# apply sync_bn when using multiple gpu and batch_size per gpu is lower than 4
# useful when gpu memory is limited.
# because when bn is disable, the training will be very unstable or slow to converge,
# apply sync_bn can solve it,
# by packing all mini-batch across all gpus as one batch and normalize, then send it back to all gpus.
# but it would also slow down the training by a little bit.
if opt.num_gpus > 1 and opt.batch_size // opt.num_gpus < 4:
model.apply(replace_w_sync_bn)
use_sync_bn = True
else:
use_sync_bn = False
writer = SummaryWriter(opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
# wrap the model with loss function, to reduce the memory usage on gpu0 and speedup
model = ModelWithLoss(model, debug=opt.debug)
if opt.num_gpus > 0:
model = model.cuda()
if opt.num_gpus > 1:
model = CustomDataParallel(model, opt.num_gpus)
if use_sync_bn:
patch_replication_callback(model)
if opt.optim == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), opt.lr)
else:
optimizer = torch.optim.SGD(model.parameters(), opt.lr, momentum=0.9, nesterov=True)
# print(ckpt)
if opt.load_weights is not None and ckpt.get('optimizer', None):
optimizer.load_state_dict(ckpt['optimizer'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
epoch = 0
best_loss = 1e5
best_epoch = 0
last_step = ckpt['step'] if opt.load_weights is not None and ckpt.get('step', None) else 0
best_fitness = ckpt['best_fitness'] if opt.load_weights is not None and ckpt.get('best_fitness', None) else 0
step = max(0, last_step)
model.train()
num_iter_per_epoch = len(training_generator)
try:
for epoch in range(opt.num_epochs):
last_epoch = step // num_iter_per_epoch
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(training_generator)
for iter, data in enumerate(progress_bar):
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
try:
imgs = data['img']
annot = data['annot']
seg_annot = data['segmentation']
if opt.num_gpus == 1:
# if only one gpu, just send it to cuda:0
# elif multiple gpus, send it to multiple gpus in CustomDataParallel, not here
imgs = imgs.cuda()
annot = annot.cuda()
seg_annot = seg_annot.cuda().long()
optimizer.zero_grad()
cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot,
seg_annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
seg_loss = seg_loss.mean()
loss = cls_loss + reg_loss + seg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Seg loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss.item(),
reg_loss.item(), seg_loss.item(), loss.item()))
writer.add_scalars('Loss', {'train': loss}, step)
writer.add_scalars('Regression_loss', {'train': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'train': cls_loss}, step)
writer.add_scalars('Segmentation_loss', {'train': seg_loss}, step)
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
step += 1
if step % opt.save_interval == 0 and step > 0:
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}.pth')
print('checkpoint...')
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
scheduler.step(np.mean(epoch_loss))
if epoch % opt.val_interval == 0:
best_fitness, best_loss, best_epoch = val(model, optimizer, val_generator, params, opt, writer, epoch,
step, best_fitness, best_loss, best_epoch)
except KeyboardInterrupt:
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}.pth')
finally:
writer.close()
if __name__ == '__main__':
opt = get_args()
train(opt)