Spaces:
Runtime error
Runtime error
from abc import ABC, abstractmethod | |
from haystack.nodes import BM25Retriever, FARMReader | |
from haystack.document_stores import ElasticsearchDocumentStore | |
from haystack.pipelines import ExtractiveQAPipeline | |
from haystack.document_stores import PineconeDocumentStore | |
from haystack.nodes import EmbeddingRetriever | |
import certifi | |
import datetime | |
import requests | |
from base64 import b64encode | |
ca_certs=certifi.where() | |
class DocumentQueries(ABC): | |
def search_by_query(self, query : str, retriever_top_k: int, reader_top_k: int, es_index: str): | |
pass | |
class PinecodeProposalQueries(DocumentQueries): | |
def __init__(self, es_host: str, es_index: str, es_user, es_password, reader_name_or_path: str, use_gpu = True) -> None: | |
reader = FARMReader(model_name_or_path = reader_name_or_path, use_gpu = use_gpu, num_processes=1, context_window_size=200) | |
self._initialize_pipeline(es_host, es_index, es_user, es_password, reader = reader) | |
#self.log = Log(es_host= es_host, es_index="log", es_user = es_user, es_password= es_password) | |
def _initialize_pipeline(self, es_host, es_index, es_user, es_password, reader = None): | |
if reader is not None: | |
self.reader = reader | |
self.es_host = es_host | |
self.es_user = es_user | |
self.es_password = es_password | |
self.document_store = PineconeDocumentStore( | |
api_key=es_password, | |
environment = "us-east1-gcp", | |
index=es_index, | |
similarity="cosine", | |
embedding_dim=384 | |
) | |
#self.retriever = BM25Retriever(document_store = self.document_store) | |
self.retriever = EmbeddingRetriever( | |
document_store=self.document_store, | |
embedding_model="multi-qa-MiniLM-L6-cos-v1", | |
model_format="sentence_transformers" | |
) | |
self.document_store.update_embeddings(self.retriever, batch_size=16 | |
) | |
#self.pipe = ExtractiveQAPipeline(self.reader, self.retriever) | |
def search_by_query(self, query : str, retriever_top_k: int, reader_top_k: int, es_index: str = None) : | |
#self.log.write_log(query, "hfspace-informecomision") | |
#if es_index is not None: | |
#self._initialize_pipeline(self.es_host, es_index, self.es_user, self.es_password) | |
params = {"Retriever": {"top_k": retriever_top_k}, "Reader": {"top_k": reader_top_k}} | |
prediction = self.pipe.run( query = query, params = params) | |
return prediction["answers"] | |
class Log(): | |
def __init__(self, es_host: str, es_index: str, es_user, es_password) -> None: | |
self.elastic_endpoint = f"https://{es_host}:443/{es_index}/_doc" | |
self.credentials = b64encode(b"3pvrzh9tl:4yl4vk9ijr").decode("ascii") | |
self.auth_header = { 'Authorization' : 'Basic %s' % self.credentials } | |
def write_log(self, message: str, source: str) -> None: | |
created_date = datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%SZ') | |
post_data = { | |
"message" : message, | |
"createdDate": { | |
"date" : created_date | |
}, | |
"source": source | |
} | |
r = requests.post(self.elastic_endpoint, json = post_data, headers = self.auth_header) | |
print(r.text) |