ask2democracy / app.py
Jorge Henao
refactor single app.py
991cc91
raw
history blame
3.87 kB
import gradio as gr
from haystack.nodes import BM25Retriever, FARMReader
from haystack.document_stores import ElasticsearchDocumentStore
from haystack.pipelines import ExtractiveQAPipeline
from abc import ABC, abstractmethod
import certifi
ca_certs=certifi.where()
class Config():
es_host = "ask2democracy.es.us-central1.gcp.cloud.es.io"
es_user = "elastic"
es_password = "siKAHmmk2flwEaKNqQVZwp49"
proposals_index = "petrolfo"
#reader_model_name_or_path = "deepset/roberta-base-squad2"
reader_model_name_or_path = "deepset/xlm-roberta-large-squad2"
use_gpu = True
class DocumentQueries(ABC):
@abstractmethod
def search_by_query(self, query : str, retriever_top_k: int, reader_top_k: int, es_index: str):
pass
class ExtractiveProposalQueries(DocumentQueries):
def __init__(self, es_host: str, es_index: str, es_user, es_password, reader_name_or_path: str, use_gpu = False) -> None:
reader = FARMReader(model_name_or_path = reader_name_or_path, use_gpu = use_gpu, num_processes=1)
self._initialize_pipeline(es_host, es_index, es_user, es_password, reader = reader)
def _initialize_pipeline(self, es_host, es_index, es_user, es_password, reader = None):
if reader is not None:
self.reader = reader
self.es_host = es_host
self.es_user = es_user
self.es_password = es_password
self.document_store = ElasticsearchDocumentStore(host = es_host, username=es_user, password=es_password, index = es_index, port = 443, scheme='https', verify_certs=True, ca_certs=ca_certs)
self.retriever = BM25Retriever(document_store = self.document_store)
self.pipe = ExtractiveQAPipeline(self.reader, self.retriever)
def search_by_query(self, query : str, retriever_top_k: int, reader_top_k: int, es_index: str = None) :
if es_index is not None:
self._initialize_pipeline(self.es_host, es_index, self.es_user, self.es_password)
params = {"Retriever": {"top_k": retriever_top_k}, "Reader": {"top_k": reader_top_k}}
prediction = self.pipe.run( query = query, params = params)
return prediction["answers"]
query = ExtractiveProposalQueries(es_host = Config.es_host, es_index = Config.proposals_index,
es_user = Config.es_user, es_password = Config.es_password,
reader_name_or_path = Config.reader_model_name_or_path,
use_gpu = Config.use_gpu)
def update(query):
return f"{query}", f"{query}", f"{query}", f"{query}"
def search(question):
p1_result = query.search_by_query(query = question, retriever_top_k = 5, reader_top_k = 3, es_index = "petro")
p2_result = query.search_by_query(query = question, retriever_top_k = 5, reader_top_k = 3, es_index = "rodolfo")
return [p1_result[0].answer,
p1_result[0].context,
p2_result[0].answer,
p2_result[0].context]
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Ask2Democracy
Preguntale a los candidatos
""")
inp = gr.Textbox(placeholder="Haz tu pregunta aquΓ­")
search_button = gr.Button("Buscar")
with gr.Row():
response = gr.Label(value="Petro")
context = gr.Label(value="El viejo")
with gr.Row():
with gr.Column():
# resp_1 = gr.Markdown("<b>Respuesta</b>")
# context_1 = gr.Markdown("<b>Contexto</b>")
resp_1 = gr.Textbox(lines=1, label="respuesta")
context_1 = gr.Textbox(lines=5, label="contexto")
with gr.Column():
resp_2 = gr.Textbox(lines=1, label="respuesta")
context_2 = gr.Textbox(lines=5, label="contexto")
search_button.click(search, inputs = inp, outputs=[resp_1, context_1, resp_2, context_2])
demo.launch(debug = True)