Rahul Bhoyar commited on
Commit
cba56a4
·
1 Parent(s): b4fe0a7

Files Updated

Browse files
Files changed (2) hide show
  1. .gitignore +3 -1
  2. app.py +11 -23
.gitignore CHANGED
@@ -1,2 +1,4 @@
1
  venv/
2
- data/*
 
 
 
1
  venv/
2
+ data/*
3
+ app2.py
4
+ app3.py
app.py CHANGED
@@ -1,4 +1,3 @@
1
- import copy
2
  import streamlit as st
3
  from llama_index import VectorStoreIndex
4
  from llama_index import ServiceContext
@@ -9,12 +8,13 @@ from PyPDF2 import PdfReader
9
 
10
  # Streamlit title and description
11
  st.title("PDF querying using Llama-Index by Rahul Bhoyar")
12
- st.write("Base Model : **HuggingFaceH4/zephyr-7b-alpha (open-source from HuggineFace)**")
13
- st.write("Embedding Model : **WhereIsAI/UAE-Large-V1(open-source from HuggineFace)**")
14
- st.write("This app allows you to upload your own Pdf and query your document.")
15
 
16
  hf_token = st.text_input("Enter your Hugging Face token:")
17
 
 
18
  def read_pdf(uploaded_file):
19
  pdf_reader = PdfReader(uploaded_file)
20
  text = ""
@@ -22,6 +22,7 @@ def read_pdf(uploaded_file):
22
  text += pdf_reader.pages[page_num].extract_text()
23
  return text
24
 
 
25
  # Streamlit input for user file upload
26
  success = False
27
  query_engine_creation = False
@@ -34,12 +35,11 @@ if uploaded_pdf is not None:
34
  documents = [documents]
35
  st.success("Documents loaded successfully!")
36
 
37
-
 
 
38
  with st.spinner('Creating Vector Embeddings...'):
39
- llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-alpha", token=hf_token)
40
  embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
41
-
42
-
43
  service_context = ServiceContext.from_defaults(
44
  llm=llm, chunk_size=800, chunk_overlap=20, embed_model=embed_model_uae
45
  )
@@ -50,19 +50,10 @@ if uploaded_pdf is not None:
50
  # Display the result of the task
51
  st.success("Vector embeddings created.")
52
  success = True
53
- # # Streamlit input for user query
54
- # user_query = st.text_input("Enter your query:")
55
-
56
- # # Query engine with user input
57
- # if user_query:
58
- # with st.spinner('Fetching the response...'):
59
- # response = query_engine.query(user_query)
60
-
61
- # st.markdown(f"**Response:** {response}")
62
  else:
63
  st.write("Please upload a file first.")
64
-
65
- if query_engine_creation:
66
  QUERY_ENGINE = query_engine
67
 
68
  # Streamlit input for user query
@@ -73,8 +64,5 @@ if query_engine_creation:
73
  if user_query:
74
  with st.spinner('Fetching the response...'):
75
  response = QUERY_ENGINE.query(user_query)
76
-
77
- st.markdown(f"**Response:** {response}")
78
 
79
-
80
-
 
 
1
  import streamlit as st
2
  from llama_index import VectorStoreIndex
3
  from llama_index import ServiceContext
 
8
 
9
  # Streamlit title and description
10
  st.title("PDF querying using Llama-Index by Rahul Bhoyar")
11
+ st.write("Base Model: **HuggingFaceH4/zephyr-7b-alpha (open-source from HuggingFace)**")
12
+ st.write("Embedding Model: **WhereIsAI/UAE-Large-V1 (open-source from HuggingFace)**")
13
+ st.write("This app allows you to upload your own PDF and query your document.")
14
 
15
  hf_token = st.text_input("Enter your Hugging Face token:")
16
 
17
+
18
  def read_pdf(uploaded_file):
19
  pdf_reader = PdfReader(uploaded_file)
20
  text = ""
 
22
  text += pdf_reader.pages[page_num].extract_text()
23
  return text
24
 
25
+
26
  # Streamlit input for user file upload
27
  success = False
28
  query_engine_creation = False
 
35
  documents = [documents]
36
  st.success("Documents loaded successfully!")
37
 
38
+ model = st.selectbox('Select the model', ('google/flan-t5-xxl','HuggingFaceH4/zephyr-7b-alpha'), index=0)
39
+ llm = HuggingFaceInferenceAPI(model_name=model, token=hf_token)
40
+
41
  with st.spinner('Creating Vector Embeddings...'):
 
42
  embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
 
 
43
  service_context = ServiceContext.from_defaults(
44
  llm=llm, chunk_size=800, chunk_overlap=20, embed_model=embed_model_uae
45
  )
 
50
  # Display the result of the task
51
  st.success("Vector embeddings created.")
52
  success = True
 
 
 
 
 
 
 
 
 
53
  else:
54
  st.write("Please upload a file first.")
55
+
56
+ if query_engine_creation:
57
  QUERY_ENGINE = query_engine
58
 
59
  # Streamlit input for user query
 
64
  if user_query:
65
  with st.spinner('Fetching the response...'):
66
  response = QUERY_ENGINE.query(user_query)
 
 
67
 
68
+ st.markdown(f"**Response:** {response}")