|
import torch |
|
|
|
from gfpgan.archs.stylegan2_clean_arch import StyleGAN2GeneratorClean |
|
|
|
|
|
def test_stylegan2generatorclean(): |
|
"""Test arch: StyleGAN2GeneratorClean.""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
net = StyleGAN2GeneratorClean( |
|
out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=0.5).cuda().eval() |
|
style = torch.rand((1, 512), dtype=torch.float32).cuda() |
|
output = net([style], input_is_latent=False) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
output = net([style], input_is_latent=True, return_latents=True) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 1 |
|
|
|
assert output[1][0].shape == (8, 512) |
|
|
|
|
|
output = net([style], randomize_noise=False) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
output = net([style, style], truncation=0.5, truncation_latent=style) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
out = net.make_noise() |
|
assert len(out) == 7 |
|
assert out[0].shape == (1, 1, 4, 4) |
|
assert out[1].shape == (1, 1, 8, 8) |
|
assert out[2].shape == (1, 1, 8, 8) |
|
assert out[3].shape == (1, 1, 16, 16) |
|
assert out[4].shape == (1, 1, 16, 16) |
|
assert out[5].shape == (1, 1, 32, 32) |
|
assert out[6].shape == (1, 1, 32, 32) |
|
|
|
|
|
out = net.get_latent(style) |
|
assert out.shape == (1, 512) |
|
|
|
|
|
out = net.mean_latent(2) |
|
assert out.shape == (1, 512) |
|
|