|
|
|
|
|
from setuptools import find_packages, setup |
|
|
|
import os |
|
import subprocess |
|
import time |
|
|
|
version_file = 'gfpgan/version.py' |
|
|
|
|
|
def readme(): |
|
with open('README.md', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
|
|
def get_git_hash(): |
|
|
|
def _minimal_ext_cmd(cmd): |
|
|
|
env = {} |
|
for k in ['SYSTEMROOT', 'PATH', 'HOME']: |
|
v = os.environ.get(k) |
|
if v is not None: |
|
env[k] = v |
|
|
|
env['LANGUAGE'] = 'C' |
|
env['LANG'] = 'C' |
|
env['LC_ALL'] = 'C' |
|
out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0] |
|
return out |
|
|
|
try: |
|
out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) |
|
sha = out.strip().decode('ascii') |
|
except OSError: |
|
sha = 'unknown' |
|
|
|
return sha |
|
|
|
|
|
def get_hash(): |
|
if os.path.exists('.git'): |
|
sha = get_git_hash()[:7] |
|
else: |
|
sha = 'unknown' |
|
|
|
return sha |
|
|
|
|
|
def write_version_py(): |
|
content = """# GENERATED VERSION FILE |
|
# TIME: {} |
|
__version__ = '{}' |
|
__gitsha__ = '{}' |
|
version_info = ({}) |
|
""" |
|
sha = get_hash() |
|
with open('VERSION', 'r') as f: |
|
SHORT_VERSION = f.read().strip() |
|
VERSION_INFO = ', '.join([x if x.isdigit() else f'"{x}"' for x in SHORT_VERSION.split('.')]) |
|
|
|
version_file_str = content.format(time.asctime(), SHORT_VERSION, sha, VERSION_INFO) |
|
with open(version_file, 'w') as f: |
|
f.write(version_file_str) |
|
|
|
|
|
def get_version(): |
|
with open(version_file, 'r') as f: |
|
exec(compile(f.read(), version_file, 'exec')) |
|
return locals()['__version__'] |
|
|
|
|
|
def get_requirements(filename='requirements.txt'): |
|
here = os.path.dirname(os.path.realpath(__file__)) |
|
with open(os.path.join(here, filename), 'r') as f: |
|
requires = [line.replace('\n', '') for line in f.readlines()] |
|
return requires |
|
|
|
|
|
if __name__ == '__main__': |
|
write_version_py() |
|
setup( |
|
name='gfpgan', |
|
version=get_version(), |
|
description='GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration', |
|
long_description=readme(), |
|
long_description_content_type='text/markdown', |
|
author='Xintao Wang', |
|
author_email='xintao.wang@outlook.com', |
|
keywords='computer vision, pytorch, image restoration, super-resolution, face restoration, gan, gfpgan', |
|
url='https://github.com/TencentARC/GFPGAN', |
|
include_package_data=True, |
|
packages=find_packages(exclude=('options', 'datasets', 'experiments', 'results', 'tb_logger', 'wandb')), |
|
classifiers=[ |
|
'Development Status :: 4 - Beta', |
|
'License :: OSI Approved :: Apache Software License', |
|
'Operating System :: OS Independent', |
|
'Programming Language :: Python :: 3', |
|
'Programming Language :: Python :: 3.7', |
|
'Programming Language :: Python :: 3.8', |
|
], |
|
license='Apache License Version 2.0', |
|
setup_requires=['cython', 'numpy'], |
|
install_requires=get_requirements(), |
|
zip_safe=False) |
|
|