GFPGAN / app.py
Ahsen Khaliq
imports
f25bddf
raw
history blame
2.61 kB
import os
import random
import gradio as gr
from PIL import Image
import torch
from random import randint
import sys
from subprocess import call
import psutil
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'lincoln.jpg')
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', 'einstein.png')
import argparse
import cv2
import glob
import numpy as np
import os
import torch
from basicsr.utils import imwrite
from gfpgan import GFPGANer
os.system("pip install gfpgan")
os.system("pip freeze")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .")
def run_cmd(command):
try:
print(command)
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
def inference(img):
_id = randint(1, 10000)
INPUT_DIR = "/tmp/input_image" + str(_id) + "/"
OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/"
run_cmd("rm -rf " + INPUT_DIR)
run_cmd("rm -rf " + OUTPUT_DIR)
run_cmd("mkdir " + INPUT_DIR)
run_cmd("mkdir " + OUTPUT_DIR)
basewidth = 256
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save(INPUT_DIR + "1.jpg", "JPEG")
run_cmd("python inference_gfpgan.py --upscale 2 --test_path "+ INPUT_DIR + " --save_root " + OUTPUT_DIR + " --paste_back")
return os.path.join(OUTPUT_DIR, "1_00.png")
title = "GFP-GAN"
description = "Gradio demo for GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061'>Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=[
['lincoln.jpg'],
['einstein.png']
],
enable_queue=True
).launch(debug=True)