|
import argparse |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
import os |
|
import torch |
|
from basicsr.utils import imwrite |
|
|
|
from gfpgan import GFPGANer |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--upscale', type=int, default=2) |
|
parser.add_argument('--arch', type=str, default='clean') |
|
parser.add_argument('--channel', type=int, default=2) |
|
parser.add_argument('--model_path', type=str, default='experiments/pretrained_models/GFPGANCleanv1-NoCE-C2.pth') |
|
parser.add_argument('--bg_upsampler', type=str, default='realesrgan') |
|
parser.add_argument('--bg_tile', type=int, default=400) |
|
parser.add_argument('--test_path', type=str, default='inputs/whole_imgs') |
|
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') |
|
parser.add_argument('--only_center_face', action='store_true') |
|
parser.add_argument('--aligned', action='store_true') |
|
parser.add_argument('--paste_back', action='store_false') |
|
parser.add_argument('--save_root', type=str, default='results') |
|
|
|
args = parser.parse_args() |
|
if args.test_path.endswith('/'): |
|
args.test_path = args.test_path[:-1] |
|
os.makedirs(args.save_root, exist_ok=True) |
|
|
|
|
|
if args.bg_upsampler == 'realesrgan': |
|
if not torch.cuda.is_available(): |
|
import warnings |
|
warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. ' |
|
'If you really want to use it, please modify the corresponding codes.') |
|
bg_upsampler = None |
|
else: |
|
from realesrgan import RealESRGANer |
|
bg_upsampler = RealESRGANer( |
|
scale=2, |
|
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', |
|
tile=args.bg_tile, |
|
tile_pad=10, |
|
pre_pad=0, |
|
half=True) |
|
else: |
|
bg_upsampler = None |
|
|
|
restorer = GFPGANer( |
|
model_path=args.model_path, |
|
upscale=args.upscale, |
|
arch=args.arch, |
|
channel_multiplier=args.channel, |
|
bg_upsampler=bg_upsampler) |
|
|
|
img_list = sorted(glob.glob(os.path.join(args.test_path, '*'))) |
|
for img_path in img_list: |
|
|
|
img_name = os.path.basename(img_path) |
|
print(f'Processing {img_name} ...') |
|
basename, ext = os.path.splitext(img_name) |
|
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) |
|
|
|
cropped_faces, restored_faces, restored_img = restorer.enhance( |
|
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=args.paste_back) |
|
|
|
|
|
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): |
|
|
|
save_crop_path = os.path.join(args.save_root, 'cropped_faces', f'{basename}_{idx:02d}.png') |
|
imwrite(cropped_face, save_crop_path) |
|
|
|
if args.suffix is not None: |
|
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' |
|
else: |
|
save_face_name = f'{basename}_{idx:02d}.png' |
|
save_restore_path = os.path.join(args.save_root, 'restored_faces', save_face_name) |
|
imwrite(restored_face, save_restore_path) |
|
|
|
cmp_img = np.concatenate((cropped_face, restored_face), axis=1) |
|
imwrite(cmp_img, os.path.join(args.save_root, 'cmp', f'{basename}_{idx:02d}.png')) |
|
|
|
|
|
if restored_img is not None: |
|
if args.suffix is not None: |
|
save_restore_path = os.path.join(args.save_root, 'restored_imgs', f'{basename}_{args.suffix}{ext}') |
|
else: |
|
save_restore_path = os.path.join(args.save_root, 'restored_imgs', img_name) |
|
imwrite(restored_img, save_restore_path) |
|
|
|
print(f'Results are in the [{args.save_root}] folder.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|