|
import os |
|
os.system('pip install gradio --upgrade') |
|
os.system('pip freeze') |
|
import random |
|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
from random import randint |
|
import sys |
|
from subprocess import call |
|
import psutil |
|
torch.hub.download_url_to_file('http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution_files/100075_lowres.jpg', 'bear.jpg') |
|
|
|
|
|
def run_cmd(command): |
|
try: |
|
print(command) |
|
call(command, shell=True) |
|
except KeyboardInterrupt: |
|
print("Process interrupted") |
|
sys.exit(1) |
|
run_cmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .") |
|
|
|
run_cmd("pip install basicsr") |
|
run_cmd("pip install facexlib") |
|
run_cmd("pip freeze") |
|
|
|
def inference(img): |
|
_id = randint(1, 10000) |
|
INPUT_DIR = "/tmp/input_image" + str(_id) + "/" |
|
OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/" |
|
run_cmd("rm -rf " + INPUT_DIR) |
|
run_cmd("rm -rf " + OUTPUT_DIR) |
|
run_cmd("mkdir " + INPUT_DIR) |
|
run_cmd("mkdir " + OUTPUT_DIR) |
|
basewidth = 256 |
|
wpercent = (basewidth/float(img.size[0])) |
|
hsize = int((float(img.size[1])*float(wpercent))) |
|
img = img.resize((basewidth,hsize), Image.ANTIALIAS) |
|
img.save(INPUT_DIR + "1.jpg", "JPEG") |
|
run_cmd("python inference_gfpgan.py --upscale 2 --test_path "+ INPUT_DIR + " --save_root " + OUTPUT_DIR) |
|
return os.path.join(OUTPUT_DIR, "restored_imgs/1_00.png") |
|
|
|
title = "Real-ESRGAN" |
|
description = "Gradio demo for Real-ESRGAN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once" |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/xinntao/Real-ESRGAN'>Github Repo</a></p>" |
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type="pil", label="Input")], |
|
gr.outputs.Image(type="file", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[ |
|
['bear.jpg'] |
|
], |
|
enable_queue=True |
|
).launch(debug=True) |