Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ def load_models():
|
|
39 |
FastLanguageModel.for_inference(model)
|
40 |
|
41 |
except Exception as e:
|
42 |
-
st.error(f"β οΈ Failed to load Mistral model with Unsloth: {e}")
|
43 |
continue
|
44 |
else:
|
45 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
@@ -49,8 +49,9 @@ def load_models():
|
|
49 |
models[name] = {"tokenizer": tokenizer, "model": model}
|
50 |
return models
|
51 |
|
52 |
-
|
53 |
models = load_models()
|
|
|
54 |
|
55 |
model_choice = st.selectbox("Choose a model:", list(MODEL_OPTIONS.keys()))
|
56 |
tokenizer = models[model_choice]["tokenizer"]
|
@@ -61,8 +62,9 @@ model = models[model_choice]["model"]
|
|
61 |
def load_gsm8k_dataset():
|
62 |
return load_dataset("openai/gsm8k", "main")["test"]
|
63 |
|
|
|
64 |
gsm8k_data = load_gsm8k_dataset()
|
65 |
-
st.write("π GSM8K loaded:", len(gsm8k_data), "samples")
|
66 |
|
67 |
# === TABS ===
|
68 |
tab1, tab2 = st.tabs(["π Manual Prompting", "π GSM8K Evaluation"])
|
@@ -71,7 +73,7 @@ tab1, tab2 = st.tabs(["π Manual Prompting", "π GSM8K Evaluation"])
|
|
71 |
with tab1:
|
72 |
prompt = st.text_area("Enter your math prompt:", "Jasper has 5 apples and eats 2 of them. How many apples does he have left?")
|
73 |
if st.button("Generate Response", key="manual"):
|
74 |
-
with st.spinner("Generating..."):
|
75 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
76 |
output = model.generate(
|
77 |
**inputs,
|
@@ -98,23 +100,24 @@ with tab2:
|
|
98 |
|
99 |
if st.button("Run GSM8K Sample"):
|
100 |
try:
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
st.subheader("π GSM8K Question")
|
120 |
st.markdown(question)
|
|
|
39 |
FastLanguageModel.for_inference(model)
|
40 |
|
41 |
except Exception as e:
|
42 |
+
st.sidebar.error(f"β οΈ Failed to load Mistral model with Unsloth: {e}")
|
43 |
continue
|
44 |
else:
|
45 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
|
|
49 |
models[name] = {"tokenizer": tokenizer, "model": model}
|
50 |
return models
|
51 |
|
52 |
+
st.sidebar.write("π₯ Load Models.")
|
53 |
models = load_models()
|
54 |
+
st.sidebar.write(f"β
Successfully loaded models:{models}")
|
55 |
|
56 |
model_choice = st.selectbox("Choose a model:", list(MODEL_OPTIONS.keys()))
|
57 |
tokenizer = models[model_choice]["tokenizer"]
|
|
|
62 |
def load_gsm8k_dataset():
|
63 |
return load_dataset("openai/gsm8k", "main")["test"]
|
64 |
|
65 |
+
st.sidebar.write("π₯ Load GSM8K")
|
66 |
gsm8k_data = load_gsm8k_dataset()
|
67 |
+
st.sidebar.write("π GSM8K loaded:", len(gsm8k_data), "samples")
|
68 |
|
69 |
# === TABS ===
|
70 |
tab1, tab2 = st.tabs(["π Manual Prompting", "π GSM8K Evaluation"])
|
|
|
73 |
with tab1:
|
74 |
prompt = st.text_area("Enter your math prompt:", "Jasper has 5 apples and eats 2 of them. How many apples does he have left?")
|
75 |
if st.button("Generate Response", key="manual"):
|
76 |
+
with st.sidebar.spinner("π Generating..."):
|
77 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
78 |
output = model.generate(
|
79 |
**inputs,
|
|
|
100 |
|
101 |
if st.button("Run GSM8K Sample"):
|
102 |
try:
|
103 |
+
with st.sidebar.spinner("π Generating..."):
|
104 |
+
sample = random.choice(gsm8k_data)
|
105 |
+
question = sample["question"]
|
106 |
+
gold_answer = sample["answer"]
|
107 |
+
|
108 |
+
inputs = tokenizer(question, return_tensors="pt").to(model.device)
|
109 |
+
|
110 |
+
st.markdown(f"Create Output")
|
111 |
+
output = model.generate(
|
112 |
+
**inputs,
|
113 |
+
max_new_tokens=150,
|
114 |
+
temperature=0.7,
|
115 |
+
do_sample=True,
|
116 |
+
pad_token_id=tokenizer.eos_token_id,
|
117 |
+
eos_token_id=tokenizer.eos_token_id,
|
118 |
+
)
|
119 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
120 |
+
response_only = generated_text[len(question):].strip()
|
121 |
|
122 |
st.subheader("π GSM8K Question")
|
123 |
st.markdown(question)
|