Spaces:
Runtime error
Runtime error
Jonathan Li
commited on
Commit
·
1ebc0dd
1
Parent(s):
2bceb77
Revert "Add broken streamlit (no way to mark sponsors?)"
Browse filesThis reverts commit 2bceb77e414dd0e5ef1400dec9e5731109481697.
- app.py +65 -119
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,26 +1,17 @@
|
|
1 |
-
import
|
2 |
-
import streamlit as st
|
3 |
import requests
|
4 |
from transformers import AutoTokenizer, pipeline
|
5 |
from youtube_transcript_api._transcripts import TranscriptListFetcher
|
6 |
|
7 |
tagger = pipeline(
|
8 |
-
"token-classification",
|
|
|
|
|
9 |
)
|
10 |
tokenizer = AutoTokenizer.from_pretrained("./checkpoint-6000")
|
11 |
max_size = 512
|
12 |
classes = [False, True]
|
13 |
|
14 |
-
pattern = re.compile(
|
15 |
-
r"(?:https?:\/\/)?(?:[0-9A-Z-]+\.)?(?:youtube|youtu|youtube-nocookie)\.(?:com|be)\/(?:watch\?v=|watch\?.+&v=|embed\/|v\/|.+\?v=)?([^&=\n%\?]{11})"
|
16 |
-
)
|
17 |
-
|
18 |
-
|
19 |
-
def video_id(url):
|
20 |
-
p = pattern.match(url)
|
21 |
-
return p.group(1)
|
22 |
-
|
23 |
-
|
24 |
def process(obj):
|
25 |
o = obj["events"]
|
26 |
new_l = []
|
@@ -56,7 +47,6 @@ def process(obj):
|
|
56 |
|
57 |
return new_l
|
58 |
|
59 |
-
|
60 |
def get_transcript(video_id, session):
|
61 |
fetcher = TranscriptListFetcher(session)
|
62 |
_json = fetcher._extract_captions_json(
|
@@ -75,113 +65,69 @@ def get_transcript(video_id, session):
|
|
75 |
p = process(obj.json())
|
76 |
return p
|
77 |
|
78 |
-
|
79 |
def transcript(video_id):
|
80 |
-
|
81 |
-
l["w"].strip() for l in get_transcript(video_id, requests.Session())
|
82 |
-
)
|
83 |
-
|
84 |
|
85 |
def inference(transcript):
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
126 |
|
127 |
def predict(transcript):
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
if url:
|
147 |
-
ts = transcript(video_id(url))
|
148 |
-
st.session_state.transcript = ts
|
149 |
-
st.session_state.url = url
|
150 |
-
else:
|
151 |
-
st.error(
|
152 |
-
"Invalid youtube url. Take a look at the examples for a supported format"
|
153 |
-
)
|
154 |
-
|
155 |
-
with load_data:
|
156 |
-
with st.form(key="load_transcript"):
|
157 |
-
url = st.text_input("Youtube Video URL", key="url")
|
158 |
-
submitted = st.form_submit_button("Get Transcript", on_click=lambda: submit(url))
|
159 |
-
transcript_text_area = st.text_area("Scraped Transcript", key="transcript")
|
160 |
-
|
161 |
-
st.caption("Or, try an example:")
|
162 |
-
examples = ["youtu.be/xsLJZyih3Ac"]
|
163 |
-
col = st.columns(len(examples))
|
164 |
-
for i, example in enumerate(examples):
|
165 |
-
col[i] = st.button(example, on_click=lambda: submit(example))
|
166 |
-
|
167 |
-
with run_ai:
|
168 |
-
with st.form(key="run_ai"):
|
169 |
-
submitted = st.form_submit_button("Predict Sponsors!")
|
170 |
-
|
171 |
-
# read_transcript = st.text("Reading...")
|
172 |
-
|
173 |
-
# with gr.Blocks() as demo:
|
174 |
-
# with gr.Row():
|
175 |
-
# with gr.Column():
|
176 |
-
# inp = gr.Textbox(label="Video URL", placeholder="Video url", lines=1, max_lines=1)
|
177 |
-
# btn = gr.Button("Fetch Transcript")
|
178 |
-
# gr.Examples(["youtu.be/xsLJZyih3Ac"], [inp])
|
179 |
-
# text = gr.Textbox(label="Transcript", placeholder="<generated transcript>")
|
180 |
-
# btn.click(fn=transcript, inputs=inp, outputs=text)
|
181 |
-
# with gr.Column():
|
182 |
-
# p = gr.Button("Predict Sponsors")
|
183 |
-
# highlight = gr.HighlightedText()
|
184 |
-
# p.click(fn=predict, inputs=text, outputs=highlight)
|
185 |
-
|
186 |
-
|
187 |
-
# demo.launch()
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import requests
|
3 |
from transformers import AutoTokenizer, pipeline
|
4 |
from youtube_transcript_api._transcripts import TranscriptListFetcher
|
5 |
|
6 |
tagger = pipeline(
|
7 |
+
"token-classification",
|
8 |
+
"./checkpoint-6000",
|
9 |
+
aggregation_strategy="first",
|
10 |
)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("./checkpoint-6000")
|
12 |
max_size = 512
|
13 |
classes = [False, True]
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def process(obj):
|
16 |
o = obj["events"]
|
17 |
new_l = []
|
|
|
47 |
|
48 |
return new_l
|
49 |
|
|
|
50 |
def get_transcript(video_id, session):
|
51 |
fetcher = TranscriptListFetcher(session)
|
52 |
_json = fetcher._extract_captions_json(
|
|
|
65 |
p = process(obj.json())
|
66 |
return p
|
67 |
|
|
|
68 |
def transcript(video_id):
|
69 |
+
return " ".join(l["w"].strip() for l in get_transcript(video_id, requests.Session()))
|
|
|
|
|
|
|
70 |
|
71 |
def inference(transcript):
|
72 |
+
tokens = tokenizer(transcript.split(" "))["input_ids"]
|
73 |
+
current_length = 0
|
74 |
+
current_word_length = 0
|
75 |
+
batches = []
|
76 |
+
for i, w in enumerate(tokens):
|
77 |
+
word = w[:-1] if i == 0 else w[1:] if i == (len(tokens) - 1) else w[1:-1]
|
78 |
+
if (current_length + len(word)) > max_size:
|
79 |
+
batch = " ".join(
|
80 |
+
tokenizer.batch_decode(
|
81 |
+
[
|
82 |
+
tok[1:-1]
|
83 |
+
for tok in tokens[max(0, i - current_word_length - 1) : i]
|
84 |
+
]
|
85 |
+
)
|
86 |
+
)
|
87 |
+
batches.append(batch)
|
88 |
+
current_word_length = 0
|
89 |
+
current_length = 0
|
90 |
+
continue
|
91 |
+
current_length += len(word)
|
92 |
+
current_word_length += 1
|
93 |
+
if current_length > 0:
|
94 |
+
batches.append(
|
95 |
+
" ".join(
|
96 |
+
tokenizer.batch_decode(
|
97 |
+
[tok[1:-1] for tok in tokens[i - current_word_length :]]
|
98 |
+
)
|
99 |
+
)
|
100 |
+
)
|
101 |
+
|
102 |
+
results = []
|
103 |
+
for split in batches:
|
104 |
+
values = tagger(split)
|
105 |
+
results.extend(
|
106 |
+
{
|
107 |
+
"sponsor": v["entity_group"] == "LABEL_1",
|
108 |
+
"phrase": v["word"],
|
109 |
+
}
|
110 |
+
for v in values
|
111 |
+
)
|
112 |
+
|
113 |
+
return results
|
114 |
|
115 |
def predict(transcript):
|
116 |
+
return [(span["phrase"], "Sponsor" if span["sponsor"] else None) for span in inference(transcript)]
|
117 |
+
|
118 |
+
|
119 |
+
with gr.Blocks() as demo:
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
inp = gr.Textbox(label="Video ID or URL", placeholder="Video id", lines=1, max_lines=1)
|
123 |
+
btn = gr.Button("Fetch Transcript")
|
124 |
+
gr.Examples(["xsLJZyih3Ac"], [inp])
|
125 |
+
text = gr.Textbox(label="Transcript", placeholder="<generated transcript>")
|
126 |
+
btn.click(fn=transcript, inputs=inp, outputs=text)
|
127 |
+
with gr.Column():
|
128 |
+
p = gr.Button("Predict Sponsors")
|
129 |
+
highlight = gr.HighlightedText()
|
130 |
+
p.click(fn=predict, inputs=text, outputs=highlight)
|
131 |
+
|
132 |
+
|
133 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -3,4 +3,4 @@ youtube_transcript_api
|
|
3 |
torch
|
4 |
pandas
|
5 |
numpy
|
6 |
-
|
|
|
3 |
torch
|
4 |
pandas
|
5 |
numpy
|
6 |
+
gradio
|