Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
import os | |
import pickle | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from collections import OrderedDict | |
from AutoPST.onmt_modules.misc import sequence_mask | |
from AutoPST.model_autopst import Generator_2 as Predictor | |
from AutoPST.hparams_autopst import hparams | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
P = Predictor(hparams).eval().to(device) | |
checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename='580000-P.ckpt'), map_location=lambda storage, loc: storage) | |
P.load_state_dict(checkpoint['model'], strict=True) | |
print('Loaded predictor .....................................................') | |
dict_test = pickle.load(open('./AutoPST/assets/test_vctk.meta', 'rb')) | |
spect_vc = OrderedDict() | |
uttrs = [('p231', 'p270', '001'), | |
('p270', 'p231', '001'), | |
('p231', 'p245', '003001'), | |
('p245', 'p231', '003001'), | |
('p239', 'p270', '024002'), | |
('p270', 'p239', '024002')] | |
for uttr in uttrs: | |
cep_real, spk_emb = dict_test[uttr[0]][uttr[2]] | |
cep_real_A = torch.from_numpy(cep_real).unsqueeze(0).to(device) | |
len_real_A = torch.tensor(cep_real_A.size(1)).unsqueeze(0).to(device) | |
real_mask_A = sequence_mask(len_real_A, cep_real_A.size(1)).float() | |
_, spk_emb = dict_test[uttr[1]][uttr[2]] | |
spk_emb_B = torch.from_numpy(spk_emb).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
spect_output, len_spect = P.infer_onmt(cep_real_A.transpose(2,1)[:,:14,:], | |
real_mask_A, | |
len_real_A, | |
spk_emb_B) | |
uttr_tgt = spect_output[:len_spect[0],0,:].cpu().numpy() | |
spect_vc[f'{uttr[0]}_{uttr[1]}_{uttr[2]}'] = uttr_tgt | |
# spectrogram to waveform | |
# Feel free to use other vocoders | |
# This cell requires some preparation to work, please see the corresponding part in AutoVC | |
import torch | |
import librosa | |
import pickle | |
import os | |
from AutoPST.synthesis import build_model | |
from AutoPST.synthesis import wavegen | |
model = build_model().to(device) | |
checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename="checkpoint_step001000000_ema.pth"), map_location=torch.device('cpu')) | |
model.load_state_dict(checkpoint["state_dict"]) | |
# for name, sp in spect_vc.items(): | |
# print(name) | |
# waveform = wavegen(model, c=sp) | |
# librosa.output.write_wav('./assets/'+name+'.wav', waveform, sr=16000) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |