tts-rvc-autopst / app.py
jonathanjordan21's picture
Update app.py
7ca2266 verified
import gradio as gr
from huggingface_hub import hf_hub_download
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
import os
import pickle
import numpy as np
import torch
import torch.nn.functional as F
from collections import OrderedDict
from onmt_modules.misc import sequence_mask
from model_autopst import Generator_2 as Predictor
from hparams_autopst import hparams
from model_sea import Generator
from hparams_sea import hparams as sea_hparams
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
P = Predictor(hparams).eval().to(device)
checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename='580000-P.ckpt'), map_location=lambda storage, loc: storage)
P.load_state_dict(checkpoint['model'], strict=True)
print('Loaded predictor .....................................................')
dict_test = pickle.load(open('./assets/test_vctk.meta', 'rb'))
spect_vc = OrderedDict()
uttrs = [('p231', 'p270', '001'),
('p270', 'p231', '001'),
('p231', 'p245', '003001'),
('p245', 'p231', '003001'),
('p239', 'p270', '024002'),
('p270', 'p239', '024002')]
for uttr in uttrs:
cep_real, spk_emb = dict_test[uttr[0]][uttr[2]]
cep_real_A = torch.from_numpy(cep_real).unsqueeze(0).to(device)
len_real_A = torch.tensor(cep_real_A.size(1)).unsqueeze(0).to(device)
real_mask_A = sequence_mask(len_real_A, cep_real_A.size(1)).float()
_, spk_emb = dict_test[uttr[1]][uttr[2]]
spk_emb_B = torch.from_numpy(spk_emb).unsqueeze(0).to(device)
with torch.no_grad():
spect_output, len_spect = P.infer_onmt(cep_real_A.transpose(2,1)[:,:14,:],
real_mask_A,
len_real_A,
spk_emb_B)
uttr_tgt = spect_output[:len_spect[0],0,:].cpu().numpy()
spect_vc[f'{uttr[0]}_{uttr[1]}_{uttr[2]}'] = uttr_tgt
# spectrogram to waveform
# Feel free to use other vocoders
# This cell requires some preparation to work, please see the corresponding part in AutoVC
import torch
import librosa
import pickle
import os
from synthesis import build_model
from synthesis import wavegen
model = build_model().to(device)
checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename="checkpoint_step001000000_ema.pth"), map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["state_dict"])
# sea_checkpoint = torch.load(hf_hub_download(repo_id="jonathanjordan21/AutoPST", filename='sea.ckpt'), map_location=lambda storage, loc: storage)
# gen =Generator(sea_hparams)
# gen.load_state_dict(sea_checkpoint['model'], strict=True)
# for name, sp in spect_vc.items():
# print(name)
# waveform = wavegen(model, c=sp)
# librosa.output.write_wav('./assets/'+name+'.wav', waveform, sr=16000)
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
import os
import pickle
import numpy as np
import soundfile as sf
from scipy import signal
from scipy.signal import get_window
from librosa.filters import mel
from numpy.random import RandomState
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def pySTFT(x, fft_length=1024, hop_length=256):
x = np.pad(x, int(fft_length//2), mode='reflect')
noverlap = fft_length - hop_length
shape = x.shape[:-1]+((x.shape[-1]-noverlap)//hop_length, fft_length)
strides = x.strides[:-1]+(hop_length*x.strides[-1], x.strides[-1])
result = np.lib.stride_tricks.as_strided(x, shape=shape,
strides=strides)
fft_window = get_window('hann', fft_length, fftbins=True)
result = np.fft.rfft(fft_window * result, n=fft_length).T
return np.abs(result)
def create_sp(cep_real, spk_emb):
# cep_real, spk_emb = dict_test[uttr[0]][uttr[2]]
cep_real_A = torch.from_numpy(cep_real).unsqueeze(0).to(device)
len_real_A = torch.tensor(cep_real_A.size(1)).unsqueeze(0).to(device)
real_mask_A = sequence_mask(len_real_A, cep_real_A.size(1)).float()
# _, spk_emb = dict_test[uttr[1]][uttr[2]]
spk_emb_B = torch.from_numpy(spk_emb).unsqueeze(0).to(device)
with torch.no_grad():
spect_output, len_spect = P.infer_onmt(cep_real_A.transpose(2,1)[:,:14,:],
real_mask_A,
len_real_A,
spk_emb_B)
uttr_tgt = spect_output[:len_spect[0],0,:].cpu().numpy()
return uttr_tgt
def create_mel(x):
mel_basis = mel(sr=16000, n_fft=1024, fmin=90, fmax=7600, n_mels=80).T
min_level = np.exp(-100 / 20 * np.log(10))
b, a = butter_highpass(30, 16000, order=5)
mfcc_mean, mfcc_std, dctmx = pickle.load(open('assets/mfcc_stats.pkl', 'rb'))
spk2emb = pickle.load(open('assets/spk2emb_82.pkl', 'rb'))
if x.shape[0] % 256 == 0:
x = np.concatenate((x, np.array([1e-06])), axis=0)
y = signal.filtfilt(b, a, x)
D = pySTFT(y * 0.96).T
D_mel = np.dot(D, mel_basis)
D_db = 20 * np.log10(np.maximum(min_level, D_mel))
# mel sp
S = (D_db + 80) / 100
# mel cep
cc_tmp = S.dot(dctmx)
cc_norm = (cc_tmp - mfcc_mean) / mfcc_std
S = np.clip(S, 0, 1)
# teacher code
# cc_torch = torch.from_numpy(cc_norm[:,0:20].astype(np.float32)).unsqueeze(0).to(device)
# with torch.no_grad():
# codes = gen.encode(cc_torch, torch.ones_like(cc_torch[:,:,0])).squeeze(0)
return S, cc_norm
def transcribe(audio, spk):
sr, y = audio
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
spk_emb = np.zeros((82,))
spk_emb[int(spk)-1] = 1
mel_sp, mel_cep = create_mel(y)
sp = create_sp(mel_cep, spk_emb)
waveform = wavegen(model, c=sp)
return 16000, waveform
# return transcriber({"sampling_rate": sr, "raw": y})["text"]
demo = gr.Interface(
transcribe,
[
gr.Audio(),
gr.Slider(1, 82, value=21, label="Count", step=1, info="Choose between 1 and 82")
],
"audio",
)
if __name__ == "__main__":
demo.launch()