Spaces:
Running
Running
jonathanjordan21
commited on
Commit
•
b4cb4dd
1
Parent(s):
6222108
Update custom_llm.py
Browse files- custom_llm.py +19 -2
custom_llm.py
CHANGED
@@ -7,13 +7,30 @@ import requests
|
|
7 |
from langchain.prompts import PromptTemplate, ChatPromptTemplate
|
8 |
from operator import itemgetter
|
9 |
|
10 |
-
# from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
12 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
13 |
from langchain_community.chat_models import ChatOpenAI
|
14 |
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
15 |
from langchain_core.messages import AIMessage, HumanMessage
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def custom_chain_with_history(llm, memory):
|
19 |
|
@@ -50,7 +67,7 @@ def custom_chain_with_history(llm, memory):
|
|
50 |
# ]
|
51 |
# )
|
52 |
|
53 |
-
return {"chat_history":prompt_memory, "context":
|
54 |
|
55 |
class CustomLLM(LLM):
|
56 |
repo_id : str
|
|
|
7 |
from langchain.prompts import PromptTemplate, ChatPromptTemplate
|
8 |
from operator import itemgetter
|
9 |
|
|
|
10 |
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
11 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
12 |
from langchain_community.chat_models import ChatOpenAI
|
13 |
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
14 |
from langchain_core.messages import AIMessage, HumanMessage
|
15 |
|
16 |
+
from langchain_community.document_loaders import DirectoryLoader
|
17 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
19 |
+
import os
|
20 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
21 |
+
from langchain.vectorstores import FAISS
|
22 |
+
|
23 |
+
|
24 |
+
def create_vectorstore():
|
25 |
+
loader = os.getenv('knowledge_base')
|
26 |
+
|
27 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=20)
|
28 |
+
|
29 |
+
docs = splitter.create_documents([loader])
|
30 |
+
|
31 |
+
emb_model = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', encode_kwargs={'normalize_embeddings': True})
|
32 |
+
db = FAISS.from_documents(docs, emb_model)
|
33 |
+
return db
|
34 |
|
35 |
def custom_chain_with_history(llm, memory):
|
36 |
|
|
|
67 |
# ]
|
68 |
# )
|
69 |
|
70 |
+
return {"chat_history":prompt_memory, "context":create_vectorstore().as_retriever(search_type="similarity", search_kwargs={"k": 8}) | format_docs, "question": RunnablePassthrough()} | prompt | llm
|
71 |
|
72 |
class CustomLLM(LLM):
|
73 |
repo_id : str
|