Spaces:
Runtime error
Runtime error
jonas-verhellen
commited on
Commit
•
8da2b6e
1
Parent(s):
b699a86
Output Reformat
Browse files- __pycache__/illuminate.cpython-310.pyc +0 -0
- app.py +29 -23
- illumination/__pycache__/__init__.cpython-310.pyc +0 -0
- illumination/__pycache__/base.cpython-310.pyc +0 -0
- illumination/__pycache__/infrastructure.cpython-310.pyc +0 -0
- illumination/__pycache__/mechanism.cpython-310.pyc +0 -0
- illumination/__pycache__/operations.cpython-310.pyc +0 -0
- illumination/app.py +0 -163
- illumination/functions/__pycache__/acquisition.cpython-310.pyc +0 -0
- illumination/functions/__pycache__/fitness.cpython-310.pyc +0 -0
- illumination/functions/__pycache__/surrogate.cpython-310.pyc +0 -0
__pycache__/illuminate.cpython-310.pyc
ADDED
Binary file (7.15 kB). View file
|
|
app.py
CHANGED
@@ -7,8 +7,13 @@ import gradio as gr
|
|
7 |
from illuminate import Illuminate
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def launch_illumination(target, representation, surrogate, acquisition, ranges, generations_max, function_calls_max, structural_filters):
|
@@ -62,20 +67,27 @@ def launch_illumination(target, representation, surrogate, acquisition, ranges,
|
|
62 |
stats_file = pd.read_csv("statistics.csv")
|
63 |
molecules_file = pd.read_csv("molecules.csv")
|
64 |
|
65 |
-
files_in_directory = os.listdir('.')
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
archive_files = [f for f in files_in_directory if pattern.match(f)]
|
69 |
-
archive_numbers = [int(pattern.search(f).group(1)) for f in archive_files]
|
70 |
-
archive_file = pd.read_csv(f'archive_{max(archive_numbers)}.csv')
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
-
return stats_file, molecules_file
|
79 |
|
80 |
def validate_and_process(target, representation, surrogate, acquisition, exact_mol_wt_min, exact_mol_wt_max, mol_log_p_min, mol_log_p_max, tpsa_min, tpsa_max, mol_mr_min, mol_mr_max, generations_max, function_calls_max, structural_filters):
|
81 |
# Ensure min is less than max for each range
|
@@ -91,9 +103,8 @@ def validate_and_process(target, representation, surrogate, acquisition, exact_m
|
|
91 |
mol_mr_range
|
92 |
]
|
93 |
|
94 |
-
stats_file, molecules_file = launch_illumination(target, representation, surrogate, acquisition, ranges, generations_max, function_calls_max, structural_filters)
|
95 |
-
return
|
96 |
-
|
97 |
|
98 |
def gradio_interface():
|
99 |
with gr.Blocks() as demo:
|
@@ -128,16 +139,11 @@ def gradio_interface():
|
|
128 |
mol_mr_min = gr.Slider(minimum=0, maximum=250, value=40, step=1, label="Minimum Molecular Refractivity")
|
129 |
mol_mr_max = gr.Slider(minimum=0, maximum=250, value=130, step=1, label="Maximum Molecular Refractivity")
|
130 |
|
131 |
-
def plot_csv(file_path):
|
132 |
-
df = pd.read_csv(file_path)
|
133 |
-
fig, ax = plt.subplots()
|
134 |
-
df.plot(ax=ax)
|
135 |
-
return fig
|
136 |
-
|
137 |
submit_btn = gr.Button("Submit")
|
138 |
|
139 |
-
|
140 |
-
|
|
|
141 |
|
142 |
submit_btn.click(
|
143 |
validate_and_process,
|
@@ -158,7 +164,7 @@ def gradio_interface():
|
|
158 |
function_calls_max,
|
159 |
structural_filters,
|
160 |
],
|
161 |
-
outputs=[
|
162 |
)
|
163 |
demo.launch()
|
164 |
|
|
|
7 |
from illuminate import Illuminate
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
+
from rdkit import Chem
|
11 |
+
from rdkit.Chem import Draw
|
12 |
|
13 |
+
def MolsMatrixToGridImage(mols, legends, filename):
|
14 |
+
img = Draw.MolsToGridImage(mols, molsPerRow=5, subImgSize=(400,400), legends=legends)
|
15 |
+
img.save(filename)
|
16 |
+
return img
|
17 |
|
18 |
|
19 |
def launch_illumination(target, representation, surrogate, acquisition, ranges, generations_max, function_calls_max, structural_filters):
|
|
|
67 |
stats_file = pd.read_csv("statistics.csv")
|
68 |
molecules_file = pd.read_csv("molecules.csv")
|
69 |
|
70 |
+
# files_in_directory = os.listdir('.')
|
71 |
+
|
72 |
+
# pattern = re.compile(r'archive_(\d+)\.csv')
|
73 |
+
# archive_files = [f for f in files_in_directory if pattern.match(f)]
|
74 |
+
# archive_numbers = [int(pattern.search(f).group(1)) for f in archive_files]
|
75 |
+
# archive_file = pd.read_csv(f'archive_{max(archive_numbers)}.csv')
|
76 |
|
77 |
+
# csv_files = [file for file in files_in_directory if file.endswith('.csv')]
|
|
|
|
|
|
|
78 |
|
79 |
+
# for csv_file in csv_files:
|
80 |
+
# if os.path.isfile(csv_file):
|
81 |
+
# os.remove(csv_file)
|
82 |
|
83 |
+
top_molecules = molecules_file.nlargest(10, 'fitness')
|
84 |
+
top_smiles = top_molecules['smiles'].tolist()
|
85 |
+
top_fitness = top_molecules['fitness'].tolist()
|
86 |
+
top_mols = [Chem.MolFromSmiles(smile) for smile in top_smiles]
|
87 |
+
top_legends = [f'Similarity: {score:.5f}' for score in top_fitness]
|
88 |
+
image = MolsMatrixToGridImage(mols=top_mols, legends=top_legends, filename='top_molecules_grid.png')
|
89 |
|
90 |
+
return image, stats_file, molecules_file
|
91 |
|
92 |
def validate_and_process(target, representation, surrogate, acquisition, exact_mol_wt_min, exact_mol_wt_max, mol_log_p_min, mol_log_p_max, tpsa_min, tpsa_max, mol_mr_min, mol_mr_max, generations_max, function_calls_max, structural_filters):
|
93 |
# Ensure min is less than max for each range
|
|
|
103 |
mol_mr_range
|
104 |
]
|
105 |
|
106 |
+
image, stats_file, molecules_file = launch_illumination(target, representation, surrogate, acquisition, ranges, generations_max, function_calls_max, structural_filters)
|
107 |
+
return image
|
|
|
108 |
|
109 |
def gradio_interface():
|
110 |
with gr.Blocks() as demo:
|
|
|
139 |
mol_mr_min = gr.Slider(minimum=0, maximum=250, value=40, step=1, label="Minimum Molecular Refractivity")
|
140 |
mol_mr_max = gr.Slider(minimum=0, maximum=250, value=130, step=1, label="Maximum Molecular Refractivity")
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
submit_btn = gr.Button("Submit")
|
143 |
|
144 |
+
output_image = gr.Image(label="Top Molecules")
|
145 |
+
gr.DownloadButton(label=f"Download Optimisation History", value="./statistics.csv", visible=True)
|
146 |
+
gr.DownloadButton(label=f"Download Output Molecules", value="./molecules.csv", visible=True)
|
147 |
|
148 |
submit_btn.click(
|
149 |
validate_and_process,
|
|
|
164 |
function_calls_max,
|
165 |
structural_filters,
|
166 |
],
|
167 |
+
outputs=[output_image]
|
168 |
)
|
169 |
demo.launch()
|
170 |
|
illumination/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/illumination/__pycache__/__init__.cpython-310.pyc and b/illumination/__pycache__/__init__.cpython-310.pyc differ
|
|
illumination/__pycache__/base.cpython-310.pyc
CHANGED
Binary files a/illumination/__pycache__/base.cpython-310.pyc and b/illumination/__pycache__/base.cpython-310.pyc differ
|
|
illumination/__pycache__/infrastructure.cpython-310.pyc
CHANGED
Binary files a/illumination/__pycache__/infrastructure.cpython-310.pyc and b/illumination/__pycache__/infrastructure.cpython-310.pyc differ
|
|
illumination/__pycache__/mechanism.cpython-310.pyc
CHANGED
Binary files a/illumination/__pycache__/mechanism.cpython-310.pyc and b/illumination/__pycache__/mechanism.cpython-310.pyc differ
|
|
illumination/__pycache__/operations.cpython-310.pyc
CHANGED
Binary files a/illumination/__pycache__/operations.cpython-310.pyc and b/illumination/__pycache__/operations.cpython-310.pyc differ
|
|
illumination/app.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import logging
|
4 |
-
import pandas as pd
|
5 |
-
from omegaconf import OmegaConf
|
6 |
-
import gradio as gr
|
7 |
-
from illuminate import Illuminate
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
|
10 |
-
def launch_illumination(target, representation, surrogate, acquisition, ranges, generations_max, function_calls_max, structural_filters):
|
11 |
-
config = {
|
12 |
-
'controller': {
|
13 |
-
'max_generations': generations_max,
|
14 |
-
'max_fitness_calls': function_calls_max
|
15 |
-
},
|
16 |
-
'archive': {
|
17 |
-
'name': 'Troglitazone',
|
18 |
-
'size': 150,
|
19 |
-
'accuracy': 25000
|
20 |
-
},
|
21 |
-
'descriptor': {
|
22 |
-
'properties': [
|
23 |
-
'Descriptors.ExactMolWt',
|
24 |
-
'Descriptors.MolLogP',
|
25 |
-
'Descriptors.TPSA',
|
26 |
-
'Crippen.MolMR'
|
27 |
-
],
|
28 |
-
'ranges': ranges
|
29 |
-
},
|
30 |
-
'fitness': {
|
31 |
-
'type': 'Fingerprint',
|
32 |
-
'target': target,
|
33 |
-
'representation': representation
|
34 |
-
},
|
35 |
-
'arbiter': {
|
36 |
-
'rules': [rule_set for rule_set in structural_filters]
|
37 |
-
},
|
38 |
-
'generator': {
|
39 |
-
'batch_size': 40,
|
40 |
-
'initial_size': 40,
|
41 |
-
'mutation_data': 'data/smarts/mutation_collection.tsv',
|
42 |
-
'initial_data': 'data/smiles/guacamol_intitial_rediscovery_troglitazone.smi'
|
43 |
-
},
|
44 |
-
'surrogate': {
|
45 |
-
'type': "Fingerprint",
|
46 |
-
'representation': surrogate,
|
47 |
-
},
|
48 |
-
'acquisition': {
|
49 |
-
'type': acquisition,
|
50 |
-
'beta': 0.3
|
51 |
-
}
|
52 |
-
}
|
53 |
-
log = logging.getLogger(__name__)
|
54 |
-
log.info(OmegaConf.to_yaml(config))
|
55 |
-
current_instance = Illuminate(OmegaConf.create(config))
|
56 |
-
current_instance()
|
57 |
-
|
58 |
-
stats_file = pd.read_csv("statistics.csv")
|
59 |
-
molecules_file = pd.read_csv("molecules.csv")
|
60 |
-
|
61 |
-
files_in_directory = os.listdir('.')
|
62 |
-
|
63 |
-
pattern = re.compile(r'archive_(\d+)\.csv')
|
64 |
-
archive_files = [f for f in files_in_directory if pattern.match(f)]
|
65 |
-
archive_numbers = [int(pattern.search(f).group(1)) for f in archive_files]
|
66 |
-
archive_file = pd.read_csv(f'archive_{max(archive_numbers)}.csv')
|
67 |
-
|
68 |
-
csv_files = [file for file in files_in_directory if file.endswith('.csv')]
|
69 |
-
|
70 |
-
for csv_file in csv_files:
|
71 |
-
if os.path.isfile(csv_file):
|
72 |
-
os.remove(csv_file)
|
73 |
-
|
74 |
-
return stats_file, molecules_file #, archive_file
|
75 |
-
|
76 |
-
def validate_and_process(target, representation, surrogate, acquisition, exact_mol_wt_min, exact_mol_wt_max, mol_log_p_min, mol_log_p_max, tpsa_min, tpsa_max, mol_mr_min, mol_mr_max, generations_max, function_calls_max, structural_filters):
|
77 |
-
# Ensure min is less than max for each range
|
78 |
-
exact_mol_wt_range = sorted([exact_mol_wt_min, exact_mol_wt_max])
|
79 |
-
mol_log_p_range = sorted([mol_log_p_min, mol_log_p_max])
|
80 |
-
tpsa_range = sorted([tpsa_min, tpsa_max])
|
81 |
-
mol_mr_range = sorted([mol_mr_min, mol_mr_max])
|
82 |
-
|
83 |
-
ranges = [
|
84 |
-
exact_mol_wt_range,
|
85 |
-
mol_log_p_range,
|
86 |
-
tpsa_range,
|
87 |
-
mol_mr_range
|
88 |
-
]
|
89 |
-
|
90 |
-
stats_file, molecules_file = launch_illumination(target, representation, surrogate, acquisition, ranges, generations_max, function_calls_max, structural_filters)
|
91 |
-
return stats_file, molecules_file
|
92 |
-
|
93 |
-
def gradio_interface():
|
94 |
-
with gr.Blocks() as demo:
|
95 |
-
|
96 |
-
representation_options = ["ECFP4", "ECFP6", "FCFP4", "FCFP6"]
|
97 |
-
surrogate_options = ["ECFP4", "ECFP6", "FCFP4", "FCFP6", "RDFP", "APFP", "TTFP"]
|
98 |
-
acquisition_options = ["Mean", "UCB", "EI", "logEI"]
|
99 |
-
|
100 |
-
target = gr.Textbox(label="Target (SMILES)", value="O=C1NC(=O)SC1Cc4ccc(OCC3(Oc2c(c(c(O)c(c2CC3)C)C)C)C)cc4")
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
generations_max = gr.Slider(minimum=0, maximum=150, value=1, step=1, label="Generations")
|
104 |
-
function_calls_max = gr.Slider(minimum=0, maximum=15000, value=5000, step=100, label="Function Calls")
|
105 |
-
|
106 |
-
structural_filters = gr.CheckboxGroup(["BMS", "Dundee", "Glaxo", "Inpharmatica", "LINT", "MLSMR", "PAINS", "SureChEMBL"], label="Structural Filters")
|
107 |
-
|
108 |
-
with gr.Row():
|
109 |
-
representation = gr.Dropdown(choices=representation_options, value="ECFP4", label="Fitness Representation")
|
110 |
-
surrogate = gr.Dropdown(choices=surrogate_options, value="ECFP4", label="Surrogate Representation")
|
111 |
-
acquisition = gr.Dropdown(choices=acquisition_options, value="Mean", label="Acquisition Function")
|
112 |
-
|
113 |
-
with gr.Accordion("Physicochemical Descriptors", open=False):
|
114 |
-
with gr.Row():
|
115 |
-
exact_mol_wt_min = gr.Slider(minimum=0, maximum=885, value=225, step=1, label="Minimum Molecular Weight")
|
116 |
-
exact_mol_wt_max = gr.Slider(minimum=0, maximum=885, value=555, step=1, label="Maximum Molecular Weight")
|
117 |
-
with gr.Row():
|
118 |
-
mol_log_p_min = gr.Slider(minimum=-4, maximum=8, value=-0.5, step=0.1, label="Minimum Log(P)")
|
119 |
-
mol_log_p_max = gr.Slider(minimum=-4, maximum=8, value=5.5, step=0.1, label="Maximum Log(P)")
|
120 |
-
with gr.Row():
|
121 |
-
tpsa_min = gr.Slider(minimum=0, maximum=250, value=0, step=1, label="Minimum TPSA")
|
122 |
-
tpsa_max = gr.Slider(minimum=0, maximum=250, value=140, step=1, label="Maximum TPSA")
|
123 |
-
with gr.Row():
|
124 |
-
mol_mr_min = gr.Slider(minimum=0, maximum=250, value=40, step=1, label="Minimum Molecular Refractivity")
|
125 |
-
mol_mr_max = gr.Slider(minimum=0, maximum=250, value=130, step=1, label="Maximum Molecular Refractivity")
|
126 |
-
|
127 |
-
def plot_csv(file_path):
|
128 |
-
df = pd.read_csv(file_path)
|
129 |
-
fig, ax = plt.subplots()
|
130 |
-
df.plot(ax=ax)
|
131 |
-
return fig
|
132 |
-
|
133 |
-
submit_btn = gr.Button("Submit")
|
134 |
-
|
135 |
-
output_df_1 = gr.Dataframe(label="Optimisation History")
|
136 |
-
output_df_2 = gr.Dataframe(label="Output Molecules")
|
137 |
-
|
138 |
-
submit_btn.click(
|
139 |
-
validate_and_process,
|
140 |
-
inputs=[
|
141 |
-
target,
|
142 |
-
representation,
|
143 |
-
surrogate,
|
144 |
-
acquisition,
|
145 |
-
exact_mol_wt_min,
|
146 |
-
exact_mol_wt_max,
|
147 |
-
mol_log_p_min,
|
148 |
-
mol_log_p_max,
|
149 |
-
tpsa_min,
|
150 |
-
tpsa_max,
|
151 |
-
mol_mr_min,
|
152 |
-
mol_mr_max,
|
153 |
-
generations_max,
|
154 |
-
function_calls_max,
|
155 |
-
structural_filters,
|
156 |
-
],
|
157 |
-
outputs=[output_df_1, output_df_2] #, plot2, plot3]
|
158 |
-
)
|
159 |
-
|
160 |
-
demo.launch()
|
161 |
-
|
162 |
-
if __name__ == "__main__":
|
163 |
-
gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
illumination/functions/__pycache__/acquisition.cpython-310.pyc
CHANGED
Binary files a/illumination/functions/__pycache__/acquisition.cpython-310.pyc and b/illumination/functions/__pycache__/acquisition.cpython-310.pyc differ
|
|
illumination/functions/__pycache__/fitness.cpython-310.pyc
CHANGED
Binary files a/illumination/functions/__pycache__/fitness.cpython-310.pyc and b/illumination/functions/__pycache__/fitness.cpython-310.pyc differ
|
|
illumination/functions/__pycache__/surrogate.cpython-310.pyc
CHANGED
Binary files a/illumination/functions/__pycache__/surrogate.cpython-310.pyc and b/illumination/functions/__pycache__/surrogate.cpython-310.pyc differ
|
|