Fabrice-TIERCELIN commited on
Commit
b0ce11b
·
verified ·
1 Parent(s): 399d79a

Upload the space

Browse files
Files changed (3) hide show
  1. README.md +17 -6
  2. app.py +322 -0
  3. requirements.txt +8 -0
README.md CHANGED
@@ -1,12 +1,23 @@
1
  ---
2
- title: Image To Image
3
- emoji: 🚀
4
- colorFrom: gray
5
- colorTo: indigo
 
 
 
 
 
 
 
 
 
6
  sdk: gradio
7
- sdk_version: 4.23.0
8
  app_file: app.py
9
  pinned: false
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Image-to-Image SDXL Turbo (any size)
3
+ emoji: ↕️
4
+ colorFrom: blue
5
+ colorTo: green
6
+ tags:
7
+ - Image-to-Image
8
+ - Image-2-Image
9
+ - Img-to-Img
10
+ - Img-2-Img
11
+ - SDXL
12
+ - Stable Diffusion
13
+ - language models
14
+ - LLMs
15
  sdk: gradio
16
+ sdk_version: 4.22.0
17
  app_file: app.py
18
  pinned: false
19
+ license: mit
20
+ short_description: Modifies the render of your image, at any resolution, freely
21
  ---
22
 
23
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import AutoPipelineForImage2Image
2
+ from PIL import Image, ImageFilter
3
+
4
+ import gradio as gr
5
+ import numpy as np
6
+ import time
7
+ import math
8
+ import random
9
+ import imageio
10
+ import torch
11
+
12
+ max_64_bit_int = 2**63 - 1
13
+
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ floatType = torch.float16 if torch.cuda.is_available() else torch.float32
16
+ variant = "fp16" if torch.cuda.is_available() else None
17
+ pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype = floatType, variant = variant)
18
+ pipe = pipe.to(device)
19
+
20
+ def update_seed(is_randomize_seed, seed):
21
+ if is_randomize_seed:
22
+ return random.randint(0, max_64_bit_int)
23
+ return seed
24
+
25
+ def toggle_debug(is_debug_mode):
26
+ if is_debug_mode:
27
+ return [gr.update(visible = True)]
28
+ return [gr.update(visible = False)]
29
+
30
+ def check(
31
+ source_img,
32
+ prompt,
33
+ negative_prompt,
34
+ num_inference_steps,
35
+ guidance_scale,
36
+ image_guidance_scale,
37
+ strength,
38
+ denoising_steps,
39
+ seed,
40
+ debug_mode,
41
+ progress = gr.Progress()
42
+ ):
43
+ if source_img is None:
44
+ raise gr.Error("Please provide an image.")
45
+
46
+ if prompt is None or prompt == "":
47
+ raise gr.Error("Please provide a prompt input.")
48
+
49
+ def inpaint(
50
+ source_img,
51
+ prompt,
52
+ negative_prompt,
53
+ num_inference_steps,
54
+ guidance_scale,
55
+ image_guidance_scale,
56
+ strength,
57
+ denoising_steps,
58
+ seed,
59
+ debug_mode,
60
+ progress = gr.Progress()
61
+ ):
62
+ check(
63
+ source_img,
64
+ prompt,
65
+ negative_prompt,
66
+ num_inference_steps,
67
+ guidance_scale,
68
+ image_guidance_scale,
69
+ strength,
70
+ denoising_steps,
71
+ seed,
72
+ debug_mode
73
+ )
74
+ start = time.time()
75
+ progress(0, desc = "Preparing data...")
76
+
77
+ if negative_prompt is None:
78
+ negative_prompt = ""
79
+
80
+ if num_inference_steps is None:
81
+ num_inference_steps = 25
82
+
83
+ if guidance_scale is None:
84
+ guidance_scale = 7
85
+
86
+ if image_guidance_scale is None:
87
+ image_guidance_scale = 1.1
88
+
89
+ if strength is None:
90
+ strength = 0.5
91
+
92
+ if denoising_steps is None:
93
+ denoising_steps = 1000
94
+
95
+ if seed is None:
96
+ seed = random.randint(0, max_64_bit_int)
97
+
98
+ random.seed(seed)
99
+ torch.manual_seed(seed)
100
+
101
+ input_image = source_img.convert("RGB")
102
+
103
+ original_height, original_width, original_channel = np.array(input_image).shape
104
+ output_width = original_width
105
+ output_height = original_height
106
+
107
+ # Limited to 1 million pixels
108
+ if 1024 * 1024 < output_width * output_height:
109
+ factor = ((1024 * 1024) / (output_width * output_height))**0.5
110
+ process_width = math.floor(output_width * factor)
111
+ process_height = math.floor(output_height * factor)
112
+
113
+ limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
114
+ else:
115
+ process_width = output_width
116
+ process_height = output_height
117
+
118
+ limitation = "";
119
+
120
+ # Width and height must be multiple of 8
121
+ if (process_width % 8) != 0 or (process_height % 8) != 0:
122
+ if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
123
+ process_width = process_width - (process_width % 8) + 8
124
+ process_height = process_height - (process_height % 8) + 8
125
+ elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
126
+ process_width = process_width - (process_width % 8) + 8
127
+ process_height = process_height - (process_height % 8)
128
+ elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
129
+ process_width = process_width - (process_width % 8)
130
+ process_height = process_height - (process_height % 8) + 8
131
+ else:
132
+ process_width = process_width - (process_width % 8)
133
+ process_height = process_height - (process_height % 8)
134
+
135
+ progress(None, desc = "Processing...")
136
+ output_image = pipe(
137
+ seeds = [seed],
138
+ width = process_width,
139
+ height = process_height,
140
+ prompt = prompt,
141
+ negative_prompt = negative_prompt,
142
+ image = input_image,
143
+ num_inference_steps = num_inference_steps,
144
+ guidance_scale = guidance_scale,
145
+ image_guidance_scale = image_guidance_scale,
146
+ strength = strength,
147
+ denoising_steps = denoising_steps,
148
+ show_progress_bar = True
149
+ ).images[0]
150
+
151
+ if limitation != "":
152
+ output_image = output_image.resize((output_width, output_height))
153
+
154
+ if debug_mode == False:
155
+ input_image = None
156
+
157
+ end = time.time()
158
+ secondes = int(end - start)
159
+ minutes = secondes // 60
160
+ secondes = secondes - (minutes * 60)
161
+ hours = minutes // 60
162
+ minutes = minutes - (hours * 60)
163
+ return [
164
+ output_image,
165
+ "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
166
+ input_image
167
+ ]
168
+
169
+ with gr.Blocks() as interface:
170
+ gr.Markdown(
171
+ """
172
+ <p style="text-align: center;"><b><big><big><big>Image-to-Image</big></big></big></b></p>
173
+ <p style="text-align: center;">Modifies the global render of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
174
+ <br/>
175
+ <br/>
176
+ 🚀 Powered by <i>SDXL Turbo</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
177
+ <br/>
178
+ <ul>
179
+ <li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
180
+ <li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li>
181
+ <li>To change one <b>detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
182
+ <li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li>
183
+ <li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
184
+ <li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
185
+ <li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
186
+ </ul>
187
+ <br/>
188
+ 🐌 Slow process... ~1 hour.<br>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
189
+ <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Image-to-Image?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
190
+ <br/>
191
+ ⚖️ You can use, modify and share the generated images but not for commercial uses.
192
+
193
+ """
194
+ )
195
+ with gr.Column():
196
+ source_img = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
197
+ prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image")
198
+ strength = gr.Slider(value = 0.5, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original image, higher=follow the prompt")
199
+ with gr.Accordion("Advanced options", open = False):
200
+ negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
201
+ num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
202
+ guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
203
+ image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
204
+ denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
205
+ randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
206
+ seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
207
+ debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
208
+
209
+ submit = gr.Button("Redraw", variant = "primary")
210
+
211
+ redrawn_image = gr.Image(label = "Redrawn image")
212
+ information = gr.Label(label = "Information")
213
+ original_image = gr.Image(label = "Original image", visible = False)
214
+
215
+ submit.click(update_seed, inputs = [
216
+ randomize_seed, seed
217
+ ], outputs = [
218
+ seed
219
+ ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
220
+ original_image
221
+ ], queue = False, show_progress = False).then(check, inputs = [
222
+ source_img,
223
+ prompt,
224
+ negative_prompt,
225
+ num_inference_steps,
226
+ guidance_scale,
227
+ image_guidance_scale,
228
+ strength,
229
+ denoising_steps,
230
+ seed,
231
+ debug_mode
232
+ ], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
233
+ source_img,
234
+ prompt,
235
+ negative_prompt,
236
+ num_inference_steps,
237
+ guidance_scale,
238
+ image_guidance_scale,
239
+ strength,
240
+ denoising_steps,
241
+ seed,
242
+ debug_mode
243
+ ], outputs = [
244
+ redrawn_image,
245
+ information,
246
+ original_image
247
+ ], scroll_to_output = True)
248
+
249
+ gr.Examples(
250
+ inputs = [
251
+ source_img,
252
+ prompt,
253
+ negative_prompt,
254
+ num_inference_steps,
255
+ guidance_scale,
256
+ image_guidance_scale,
257
+ strength,
258
+ denoising_steps,
259
+ randomize_seed,
260
+ seed,
261
+ debug_mode
262
+ ],
263
+ outputs = [
264
+ redrawn_image,
265
+ information,
266
+ original_image
267
+ ],
268
+ examples = [
269
+ [
270
+ "./Examples/Example1.png",
271
+ "Drawn image, line art, illustration",
272
+ "3d, photo, realistic, noise, blur, watermark",
273
+ 25,
274
+ 7,
275
+ 1.1,
276
+ 0.8,
277
+ 1000,
278
+ True,
279
+ 42,
280
+ False
281
+ ],
282
+ ],
283
+ cache_examples = False,
284
+ )
285
+
286
+ gr.Markdown(
287
+ """
288
+ ## How to prompt your image
289
+
290
+ To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
291
+ ```
292
+ A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
293
+ ```
294
+
295
+ You can use round brackets to increase the importance of a part:
296
+ ```
297
+ A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
298
+ ```
299
+
300
+ You can use several levels of round brackets to even more increase the importance of a part:
301
+ ```
302
+ A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
303
+ ```
304
+
305
+ You can use number instead of several round brackets:
306
+ ```
307
+ A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
308
+ ```
309
+
310
+ You can do the same thing with square brackets to decrease the importance of a part:
311
+ ```
312
+ A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
313
+ ```
314
+
315
+ To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
316
+ ```
317
+ man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
318
+ ```
319
+ """
320
+ )
321
+
322
+ interface.queue().launch()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ torchvision
2
+ diffusers
3
+ transformers
4
+ accelerate
5
+ ftfy
6
+ scipy
7
+ imageio
8
+ invisible_watermark