Fabrice TIERCELIN commited on
Commit
734e4e5
·
1 Parent(s): 68231ac

Reuse ref space of SUPIR

Browse files
Files changed (10) hide show
  1. CKPT_PTH.py +4 -0
  2. Examples/Example1.png +0 -3
  3. LICENSE +18 -0
  4. README.md +154 -20
  5. app.py +0 -328
  6. gradio_demo.py +314 -0
  7. gradio_demo_face.py +411 -0
  8. gradio_demo_tiled.py +339 -0
  9. requirements.txt +42 -8
  10. test.py +106 -0
CKPT_PTH.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ LLAVA_CLIP_PATH = '/opt/data/private/AIGC_pretrain/LLaVA1.5/clip-vit-large-patch14-336'
2
+ LLAVA_MODEL_PATH = '/opt/data/private/AIGC_pretrain/LLaVA1.5/llava-v1.5-13b'
3
+ SDXL_CLIP1_PATH = '/opt/data/private/AIGC_pretrain/clip-vit-large-patch14'
4
+ SDXL_CLIP2_CKPT_PTH = '/opt/data/private/AIGC_pretrain/CLIP-ViT-bigG-14-laion2B-39B-b160k/open_clip_pytorch_model.bin'
Examples/Example1.png DELETED

Git LFS Details

  • SHA256: 6d2b232ceb3e21af983307151c5e5b8ce5ea2e24b689feff544cfcc1019d0c91
  • Pointer size: 132 Bytes
  • Size of remote file: 1.24 MB
LICENSE ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ License
2
+
3
+ Copyright (c) 2024 XPixel Group, Especially the author team of SUPIR.
4
+
5
+ The SUPIR ("Software") is made available for use, reproduction, and distribution strictly for non-commercial purposes. For the purposes of this declaration, "non-commercial" is defined as not primarily intended for or directed towards commercial advantage or monetary compensation.
6
+
7
+ By using, reproducing, or distributing the Software, you agree to abide by this restriction and not to use the Software for any commercial purposes without obtaining prior written permission from Dr. Jinjin Gu.
8
+
9
+ This declaration does not in any way limit the rights under any open source license that may apply to the Software; it solely adds a condition that the Software shall not be used for commercial purposes.
10
+
11
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
+
13
+ For inquiries or to obtain permission for commercial use, please contact Dr. Jinjin Gu (jinjin.gu@suppixel.ai).
14
+
15
+
16
+
17
+
18
+
README.md CHANGED
@@ -1,23 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Image Upscaler
3
- emoji: ↕️
4
- colorFrom: blue
5
- colorTo: green
6
- tags:
7
- - Image-to-Image
8
- - Image-2-Image
9
- - Img-to-Img
10
- - Img-2-Img
11
- - SDXL
12
- - Stable Diffusion
13
- - language models
14
- - LLMs
15
- sdk: gradio
16
- sdk_version: 4.22.0
17
- app_file: app.py
18
- pinned: false
19
- license: mit
20
- short_description: Increases the image resolution, freely, no watermark
21
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ## (CVPR2024) Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
2
+
3
+ > [[Paper](https://arxiv.org/abs/2401.13627)] &emsp; [[Project Page](http://supir.xpixel.group/)] &emsp; [Online Demo (Coming soon)] <br>
4
+ > Fanghua, Yu, [Jinjin Gu](https://www.jasongt.com/), Zheyuan Li, Jinfan Hu, Xiangtao Kong, [Xintao Wang](https://xinntao.github.io/), [Jingwen He](https://scholar.google.com.hk/citations?user=GUxrycUAAAAJ), [Yu Qiao](https://scholar.google.com.hk/citations?user=gFtI-8QAAAAJ), [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ) <br>
5
+ > Shenzhen Institute of Advanced Technology; Shanghai AI Laboratory; University of Sydney; The Hong Kong Polytechnic University; ARC Lab, Tencent PCG; The Chinese University of Hong Kong <br>
6
+
7
+
8
+ <p align="center">
9
+ <img src="assets/teaser.png">
10
+ </p>
11
+
12
  ---
13
+ #### Due to the large RAM (60G) and VRAM (30G x2) costs of SUPIR, we are working on the online demo releasing.
14
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+ ## 🔧 Dependencies and Installation
17
+
18
+ 1. Clone repo
19
+ ```bash
20
+ git clone https://github.com/Fanghua-Yu/SUPIR.git
21
+ cd SUPIR
22
+ ```
23
+
24
+ 2. Install dependent packages
25
+ ```bash
26
+ conda create -n SUPIR python=3.8 -y
27
+ conda activate SUPIR
28
+ pip install --upgrade pip
29
+ pip install -r requirements.txt
30
+ ```
31
+
32
+ 3. Download Checkpoints
33
+
34
+ For users who can connect to huggingface, please setting `LLAVA_CLIP_PATH, SDXL_CLIP1_PATH, SDXL_CLIP2_CKPT_PTH` in `CKPT_PTH.py` as `None`. These CLIPs will be downloaded automatically.
35
+
36
+ #### Dependent Models
37
+ * [SDXL CLIP Encoder-1](https://huggingface.co/openai/clip-vit-large-patch14)
38
+ * [SDXL CLIP Encoder-2](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
39
+ * [SDXL base 1.0_0.9vae](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors)
40
+ * [LLaVA CLIP](https://huggingface.co/openai/clip-vit-large-patch14-336)
41
+ * [LLaVA v1.5 13B](https://huggingface.co/liuhaotian/llava-v1.5-13b)
42
+ * (optional) [Juggernaut-XL_v9_RunDiffusionPhoto_v2](https://huggingface.co/RunDiffusion/Juggernaut-XL-v9/blob/main/Juggernaut-XL_v9_RunDiffusionPhoto_v2.safetensors)
43
+ * Replacement of `SDXL base 1.0_0.9vae` for Photo Realistic
44
+ * (optional) [Juggernaut_RunDiffusionPhoto2_Lightning_4Steps](https://huggingface.co/RunDiffusion/Juggernaut-XL-Lightning/blob/main/Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors)
45
+ * Distilling model used in `SUPIR_v0_Juggernautv9_lightning.yaml`
46
+
47
+
48
+ #### Models we provided:
49
+ * `SUPIR-v0Q`: [Baidu Netdisk](https://pan.baidu.com/s/1lnefCZhBTeDWijqbj1jIyw?pwd=pjq6), [Google Drive](https://drive.google.com/drive/folders/1yELzm5SvAi9e7kPcO_jPp2XkTs4vK6aR?usp=sharing)
50
+
51
+ Default training settings with paper. High generalization and high image quality in most cases.
52
+
53
+ * `SUPIR-v0F`: [Baidu Netdisk](https://pan.baidu.com/s/1AECN8NjiVuE3hvO8o-Ua6A?pwd=k2uz), [Google Drive](https://drive.google.com/drive/folders/1yELzm5SvAi9e7kPcO_jPp2XkTs4vK6aR?usp=sharing)
54
+
55
+ Training with light degradation settings. Stage1 encoder of `SUPIR-v0F` remains more details when facing light degradations.
56
+
57
+ 4. Edit Custom Path for Checkpoints
58
+ ```
59
+ * [CKPT_PTH.py] --> LLAVA_CLIP_PATH, LLAVA_MODEL_PATH, SDXL_CLIP1_PATH, SDXL_CLIP2_CACHE_DIR
60
+ * [options/SUPIR_v0.yaml] --> SDXL_CKPT, SUPIR_CKPT_Q, SUPIR_CKPT_F
61
+ ```
62
+ ---
63
+
64
+ ## ⚡ Quick Inference
65
+ ### Val Dataset
66
+ RealPhoto60: [Baidu Netdisk](https://pan.baidu.com/s/1CJKsPGtyfs8QEVCQ97voBA?pwd=aocg), [Google Drive](https://drive.google.com/drive/folders/1yELzm5SvAi9e7kPcO_jPp2XkTs4vK6aR?usp=sharing)
67
+
68
+ ### Usage of SUPIR
69
+ ```Shell
70
+ Usage:
71
+ -- python test.py [options]
72
+ -- python gradio_demo.py [interactive options]
73
+
74
+ --img_dir Input folder.
75
+ --save_dir Output folder.
76
+ --upscale Upsampling ratio of given inputs. Default: 1
77
+ --SUPIR_sign Model selection. Default: 'Q'; Options: ['F', 'Q']
78
+ --seed Random seed. Default: 1234
79
+ --min_size Minimum resolution of output images. Default: 1024
80
+ --edm_steps Numb of steps for EDM Sampling Scheduler. Default: 50
81
+ --s_stage1 Control Strength of Stage1. Default: -1 (negative means invalid)
82
+ --s_churn Original hy-param of EDM. Default: 5
83
+ --s_noise Original hy-param of EDM. Default: 1.003
84
+ --s_cfg Classifier-free guidance scale for prompts. Default: 7.5
85
+ --s_stage2 Control Strength of Stage2. Default: 1.0
86
+ --num_samples Number of samples for each input. Default: 1
87
+ --a_prompt Additive positive prompt for all inputs.
88
+ Default: 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera,
89
+ hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme
90
+ meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.'
91
+ --n_prompt Fixed negative prompt for all inputs.
92
+ Default: 'painting, oil painting, illustration, drawing, art, sketch, oil painting,
93
+ cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality,
94
+ low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth'
95
+ --color_fix_type Color Fixing Type. Default: 'Wavelet'; Options: ['None', 'AdaIn', 'Wavelet']
96
+ --linear_CFG Linearly (with sigma) increase CFG from 'spt_linear_CFG' to s_cfg. Default: False
97
+ --linear_s_stage2 Linearly (with sigma) increase s_stage2 from 'spt_linear_s_stage2' to s_stage2. Default: False
98
+ --spt_linear_CFG Start point of linearly increasing CFG. Default: 1.0
99
+ --spt_linear_s_stage2 Start point of linearly increasing s_stage2. Default: 0.0
100
+ --ae_dtype Inference data type of AutoEncoder. Default: 'bf16'; Options: ['fp32', 'bf16']
101
+ --diff_dtype Inference data type of Diffusion. Default: 'fp16'; Options: ['fp32', 'fp16', 'bf16']
102
+ ```
103
+
104
+ ### Python Script
105
+ ```Shell
106
+ # Seek for best quality for most cases
107
+ CUDA_VISIBLE_DEVICES=0,1 python test.py --img_dir '/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ' --save_dir ./results-Q --SUPIR_sign Q --upscale 2
108
+ # for light degradation and high fidelity
109
+ CUDA_VISIBLE_DEVICES=0,1 python test.py --img_dir '/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ' --save_dir ./results-F --SUPIR_sign F --upscale 2 --s_cfg 4.0 --linear_CFG
110
+ ```
111
+
112
+ ### Gradio Demo
113
+ ```Shell
114
+ CUDA_VISIBLE_DEVICES=0,1 python gradio_demo.py --ip 0.0.0.0 --port 6688 --use_image_slider --log_history
115
+
116
+ # Juggernaut_RunDiffusionPhoto2_Lightning_4Steps and DPM++ M2 SDE Karras for fast sampling
117
+ CUDA_VISIBLE_DEVICES=0,1 python gradio_demo.py --ip 0.0.0.0 --port 6688 --use_image_slider --log_history --opt options/SUPIR_v0_Juggernautv9_lightning.yaml
118
+
119
+ # less VRAM & slower (12G for Diffusion, 16G for LLaVA)
120
+ CUDA_VISIBLE_DEVICES=0,1 python gradio_demo.py --ip 0.0.0.0 --port 6688 --use_image_slider --log_history --loading_half_params --use_tile_vae --load_8bit_llava
121
+ ```
122
+ <p align="center">
123
+ <img src="assets/DemoGuide.png">
124
+ </p>
125
+
126
+
127
+ ### Online Demo (Coming Soon)
128
+
129
+
130
+ ---
131
+
132
+ ## BibTeX
133
+ @misc{yu2024scaling,
134
+ title={Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild},
135
+ author={Fanghua Yu and Jinjin Gu and Zheyuan Li and Jinfan Hu and Xiangtao Kong and Xintao Wang and Jingwen He and Yu Qiao and Chao Dong},
136
+ year={2024},
137
+ eprint={2401.13627},
138
+ archivePrefix={arXiv},
139
+ primaryClass={cs.CV}
140
+ }
141
+
142
+ ---
143
+
144
+ ## 📧 Contact
145
+ If you have any question, please email `fanghuayu96@gmail.com`.
146
+
147
+ ---
148
+ ## Non-Commercial Use Only Declaration
149
+ The SUPIR ("Software") is made available for use, reproduction, and distribution strictly for non-commercial purposes. For the purposes of this declaration, "non-commercial" is defined as not primarily intended for or directed towards commercial advantage or monetary compensation.
150
+
151
+ By using, reproducing, or distributing the Software, you agree to abide by this restriction and not to use the Software for any commercial purposes without obtaining prior written permission from Dr. Jinjin Gu.
152
+
153
+ This declaration does not in any way limit the rights under any open source license that may apply to the Software; it solely adds a condition that the Software shall not be used for commercial purposes.
154
+
155
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
156
 
157
+ For inquiries or to obtain permission for commercial use, please contact Dr. Jinjin Gu (hellojasongt@gmail.com).
app.py DELETED
@@ -1,328 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import time
4
- import math
5
- import random
6
- import imageio
7
- import torch
8
-
9
- from diffusers import DiffusionPipeline
10
- from PIL import Image, ImageFilter
11
-
12
- max_64_bit_int = 2**63 - 1
13
-
14
- device = "cuda" if torch.cuda.is_available() else "cpu"
15
- floatType = torch.float16 if torch.cuda.is_available() else torch.float32
16
- variant = "fp16" if torch.cuda.is_available() else None
17
-
18
- pipe = DiffusionPipeline.from_pretrained("yushan777/SUPIR", trust_remote_code = True)
19
- pipe = pipe.to(device)
20
-
21
- def update_seed(is_randomize_seed, seed):
22
- if is_randomize_seed:
23
- return random.randint(0, max_64_bit_int)
24
- return seed
25
-
26
- def toggle_debug(is_debug_mode):
27
- if is_debug_mode:
28
- return [gr.update(visible = True)]
29
- return [gr.update(visible = False)]
30
-
31
- def check(
32
- source_img,
33
- prompt,
34
- negative_prompt,
35
- num_inference_steps,
36
- guidance_scale,
37
- image_guidance_scale,
38
- strength,
39
- denoising_steps,
40
- seed,
41
- debug_mode,
42
- progress = gr.Progress()
43
- ):
44
- if source_img is None:
45
- raise gr.Error("Please provide an image.")
46
-
47
- if prompt is None or prompt == "":
48
- raise gr.Error("Please provide a prompt input.")
49
-
50
- def redraw(
51
- source_img,
52
- prompt,
53
- negative_prompt,
54
- num_inference_steps,
55
- guidance_scale,
56
- image_guidance_scale,
57
- strength,
58
- denoising_steps,
59
- seed,
60
- debug_mode,
61
- progress = gr.Progress()
62
- ):
63
- check(
64
- source_img,
65
- prompt,
66
- negative_prompt,
67
- num_inference_steps,
68
- guidance_scale,
69
- image_guidance_scale,
70
- strength,
71
- denoising_steps,
72
- seed,
73
- debug_mode
74
- )
75
- start = time.time()
76
- progress(0, desc = "Preparing data...")
77
-
78
- if negative_prompt is None:
79
- negative_prompt = ""
80
-
81
- if num_inference_steps is None:
82
- num_inference_steps = 25
83
-
84
- if guidance_scale is None:
85
- guidance_scale = 7
86
-
87
- if image_guidance_scale is None:
88
- image_guidance_scale = 1.1
89
-
90
- if strength is None:
91
- strength = 0.5
92
-
93
- if denoising_steps is None:
94
- denoising_steps = 1000
95
-
96
- if seed is None:
97
- seed = random.randint(0, max_64_bit_int)
98
-
99
- random.seed(seed)
100
- torch.manual_seed(seed)
101
-
102
- input_image = source_img.convert("RGB")
103
-
104
- original_height, original_width, original_channel = np.array(input_image).shape
105
- output_width = original_width
106
- output_height = original_height
107
-
108
- # Limited to 1 million pixels
109
- if 1024 * 1024 < output_width * output_height:
110
- factor = ((1024 * 1024) / (output_width * output_height))**0.5
111
- process_width = math.floor(output_width * factor)
112
- process_height = math.floor(output_height * factor)
113
-
114
- limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
115
- else:
116
- process_width = output_width
117
- process_height = output_height
118
-
119
- limitation = "";
120
-
121
- # Width and height must be multiple of 8
122
- if (process_width % 8) != 0 or (process_height % 8) != 0:
123
- if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
124
- process_width = process_width - (process_width % 8) + 8
125
- process_height = process_height - (process_height % 8) + 8
126
- elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
127
- process_width = process_width - (process_width % 8) + 8
128
- process_height = process_height - (process_height % 8)
129
- elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
130
- process_width = process_width - (process_width % 8)
131
- process_height = process_height - (process_height % 8) + 8
132
- else:
133
- process_width = process_width - (process_width % 8)
134
- process_height = process_height - (process_height % 8)
135
-
136
- process_width = 1024
137
- process_height = 1024
138
-
139
- output_width = 1024
140
- output_height = 1024
141
-
142
- progress(None, desc = "Processing...")
143
- output_image = pipe(
144
- seeds = [seed],
145
- width = process_width,
146
- height = process_height,
147
- prompt = prompt,
148
- negative_prompt = negative_prompt,
149
- image = input_image,
150
- num_inference_steps = num_inference_steps,
151
- guidance_scale = guidance_scale,
152
- image_guidance_scale = image_guidance_scale,
153
- strength = strength,
154
- denoising_steps = denoising_steps,
155
- show_progress_bar = True
156
- ).images[0]
157
-
158
- if limitation != "":
159
- output_image = output_image.resize((output_width, output_height))
160
-
161
- if debug_mode == False:
162
- input_image = None
163
-
164
- end = time.time()
165
- secondes = int(end - start)
166
- minutes = secondes // 60
167
- secondes = secondes - (minutes * 60)
168
- hours = minutes // 60
169
- minutes = minutes - (hours * 60)
170
- return [
171
- output_image,
172
- "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
173
- input_image
174
- ]
175
-
176
- with gr.Blocks() as interface:
177
- gr.Markdown(
178
- """
179
- <p style="text-align: center;"><b><big><big><big>Image-to-Image</big></big></big></b></p>
180
- <p style="text-align: center;">Modifies the global render of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
181
- <br/>
182
- <br/>
183
- 🚀 Powered by <i>SDXL Turbo</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
184
- <br/>
185
- <ul>
186
- <li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
187
- <li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li>
188
- <li>To change one <b>detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
189
- <li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li>
190
- <li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
191
- <li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
192
- <li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
193
- </ul>
194
- <br/>
195
- 🐌 Slow process... ~2 hours. Your computer must not enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
196
- <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Image-to-Image?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
197
- <br/>
198
- ⚖️ You can use, modify and share the generated images but not for commercial uses.
199
-
200
- """
201
- )
202
- with gr.Column():
203
- source_img = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil")
204
- prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image")
205
- strength = gr.Slider(value = 0.5, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original image, higher=follow the prompt")
206
- with gr.Accordion("Advanced options", open = False):
207
- negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
208
- num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
209
- guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
210
- image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
211
- denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
212
- randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
213
- seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
214
- debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
215
-
216
- submit = gr.Button("Redraw", variant = "primary")
217
-
218
- redrawn_image = gr.Image(label = "Redrawn image")
219
- information = gr.Label(label = "Information")
220
- original_image = gr.Image(label = "Original image", visible = False)
221
-
222
- submit.click(update_seed, inputs = [
223
- randomize_seed, seed
224
- ], outputs = [
225
- seed
226
- ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
227
- original_image
228
- ], queue = False, show_progress = False).then(check, inputs = [
229
- source_img,
230
- prompt,
231
- negative_prompt,
232
- num_inference_steps,
233
- guidance_scale,
234
- image_guidance_scale,
235
- strength,
236
- denoising_steps,
237
- seed,
238
- debug_mode
239
- ], outputs = [], queue = False, show_progress = False).success(redraw, inputs = [
240
- source_img,
241
- prompt,
242
- negative_prompt,
243
- num_inference_steps,
244
- guidance_scale,
245
- image_guidance_scale,
246
- strength,
247
- denoising_steps,
248
- seed,
249
- debug_mode
250
- ], outputs = [
251
- redrawn_image,
252
- information,
253
- original_image
254
- ], scroll_to_output = True)
255
-
256
- gr.Examples(
257
- fn = redraw,
258
- inputs = [
259
- source_img,
260
- prompt,
261
- negative_prompt,
262
- num_inference_steps,
263
- guidance_scale,
264
- image_guidance_scale,
265
- strength,
266
- denoising_steps,
267
- seed,
268
- debug_mode
269
- ],
270
- outputs = [
271
- redrawn_image,
272
- information,
273
- original_image
274
- ],
275
- examples = [
276
- [
277
- "./Examples/Example1.png",
278
- "Drawn image, line art, illustration, picture",
279
- "3d, photo, realistic, noise, blur, watermark",
280
- 25,
281
- 7,
282
- 1.1,
283
- 0.6,
284
- 1000,
285
- 42,
286
- False
287
- ],
288
- ],
289
- cache_examples = False,
290
- )
291
-
292
- gr.Markdown(
293
- """
294
- ## How to prompt your image
295
-
296
- To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
297
- ```
298
- A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
299
- ```
300
-
301
- You can use round brackets to increase the importance of a part:
302
- ```
303
- A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
304
- ```
305
-
306
- You can use several levels of round brackets to even more increase the importance of a part:
307
- ```
308
- A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
309
- ```
310
-
311
- You can use number instead of several round brackets:
312
- ```
313
- A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
314
- ```
315
-
316
- You can do the same thing with square brackets to decrease the importance of a part:
317
- ```
318
- A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
319
- ```
320
-
321
- To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
322
- ```
323
- man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
324
- ```
325
- """
326
- )
327
-
328
- interface.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gradio_demo.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import gradio as gr
4
+ from gradio_imageslider import ImageSlider
5
+ import argparse
6
+ from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
7
+ import numpy as np
8
+ import torch
9
+ from SUPIR.util import create_SUPIR_model, load_QF_ckpt
10
+ from PIL import Image
11
+ from llava.llava_agent import LLavaAgent
12
+ from CKPT_PTH import LLAVA_MODEL_PATH
13
+ import einops
14
+ import copy
15
+ import time
16
+
17
+ parser = argparse.ArgumentParser()
18
+ parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
19
+ parser.add_argument("--ip", type=str, default='127.0.0.1')
20
+ parser.add_argument("--port", type=int, default='6688')
21
+ parser.add_argument("--no_llava", action='store_true', default=False)
22
+ parser.add_argument("--use_image_slider", action='store_true', default=False)
23
+ parser.add_argument("--log_history", action='store_true', default=False)
24
+ parser.add_argument("--loading_half_params", action='store_true', default=False)
25
+ parser.add_argument("--use_tile_vae", action='store_true', default=False)
26
+ parser.add_argument("--encoder_tile_size", type=int, default=512)
27
+ parser.add_argument("--decoder_tile_size", type=int, default=64)
28
+ parser.add_argument("--load_8bit_llava", action='store_true', default=False)
29
+ args = parser.parse_args()
30
+ server_ip = args.ip
31
+ server_port = args.port
32
+ use_llava = not args.no_llava
33
+
34
+ if torch.cuda.device_count() >= 2:
35
+ SUPIR_device = 'cuda:0'
36
+ LLaVA_device = 'cuda:1'
37
+ elif torch.cuda.device_count() == 1:
38
+ SUPIR_device = 'cuda:0'
39
+ LLaVA_device = 'cuda:0'
40
+ else:
41
+ raise ValueError('Currently support CUDA only.')
42
+
43
+ # load SUPIR
44
+ model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
45
+ if args.loading_half_params:
46
+ model = model.half()
47
+ if args.use_tile_vae:
48
+ model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
49
+ model = model.to(SUPIR_device)
50
+ model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
51
+ model.current_model = 'v0-Q'
52
+ ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
53
+
54
+ # load LLaVA
55
+ if use_llava:
56
+ llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
57
+ else:
58
+ llava_agent = None
59
+
60
+ def stage1_process(input_image, gamma_correction):
61
+ torch.cuda.set_device(SUPIR_device)
62
+ LQ = HWC3(input_image)
63
+ LQ = fix_resize(LQ, 512)
64
+ # stage1
65
+ LQ = np.array(LQ) / 255 * 2 - 1
66
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
67
+ LQ = model.batchify_denoise(LQ, is_stage1=True)
68
+ LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
69
+ # gamma correction
70
+ LQ = LQ / 255.0
71
+ LQ = np.power(LQ, gamma_correction)
72
+ LQ *= 255.0
73
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
74
+ return LQ
75
+
76
+ def llave_process(input_image, temperature, top_p, qs=None):
77
+ torch.cuda.set_device(LLaVA_device)
78
+ if use_llava:
79
+ LQ = HWC3(input_image)
80
+ LQ = Image.fromarray(LQ.astype('uint8'))
81
+ captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
82
+ else:
83
+ captions = ['LLaVA is not available. Please add text manually.']
84
+ return captions[0]
85
+
86
+ def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
87
+ s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
88
+ linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select):
89
+ torch.cuda.set_device(SUPIR_device)
90
+ event_id = str(time.time_ns())
91
+ event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
92
+ 'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
93
+ 's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
94
+ 's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
95
+ 'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
96
+ 'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
97
+ 'model_select': model_select}
98
+
99
+ if model_select != model.current_model:
100
+ if model_select == 'v0-Q':
101
+ print('load v0-Q')
102
+ model.load_state_dict(ckpt_Q, strict=False)
103
+ model.current_model = 'v0-Q'
104
+ elif model_select == 'v0-F':
105
+ print('load v0-F')
106
+ model.load_state_dict(ckpt_F, strict=False)
107
+ model.current_model = 'v0-F'
108
+ input_image = HWC3(input_image)
109
+ input_image = upscale_image(input_image, upscale, unit_resolution=32,
110
+ min_size=1024)
111
+
112
+ LQ = np.array(input_image) / 255.0
113
+ LQ = np.power(LQ, gamma_correction)
114
+ LQ *= 255.0
115
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
116
+ LQ = LQ / 255 * 2 - 1
117
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
118
+ if use_llava:
119
+ captions = [prompt]
120
+ else:
121
+ captions = ['']
122
+
123
+ model.ae_dtype = convert_dtype(ae_dtype)
124
+ model.model.dtype = convert_dtype(diff_dtype)
125
+
126
+ samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
127
+ s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
128
+ num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
129
+ use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
130
+ cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
131
+
132
+ x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
133
+ 0, 255).astype(np.uint8)
134
+ results = [x_samples[i] for i in range(num_samples)]
135
+
136
+ if args.log_history:
137
+ os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
138
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
139
+ f.write(str(event_dict))
140
+ f.close()
141
+ Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
142
+ for i, result in enumerate(results):
143
+ Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
144
+ return [input_image] + results, event_id, 3, ''
145
+
146
+
147
+ def load_and_reset(param_setting):
148
+ edm_steps = default_setting.edm_steps
149
+ s_stage2 = 1.0
150
+ s_stage1 = -1.0
151
+ s_churn = 5
152
+ s_noise = 1.003
153
+ a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
154
+ 'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
155
+ 'detailing, hyper sharpness, perfect without deformations.'
156
+ n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, CG Style, ' \
157
+ '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
158
+ 'signature, jpeg artifacts, deformed, lowres, over-smooth'
159
+ color_fix_type = 'Wavelet'
160
+ spt_linear_s_stage2 = 0.0
161
+ linear_s_stage2 = False
162
+ linear_CFG = True
163
+ if param_setting == "Quality":
164
+ s_cfg = default_setting.s_cfg_Quality
165
+ spt_linear_CFG = default_setting.spt_linear_CFG_Quality
166
+ elif param_setting == "Fidelity":
167
+ s_cfg = default_setting.s_cfg_Fidelity
168
+ spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
169
+ else:
170
+ raise NotImplementedError
171
+ return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
172
+ linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2
173
+
174
+
175
+ def submit_feedback(event_id, fb_score, fb_text):
176
+ if args.log_history:
177
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f:
178
+ event_dict = eval(f.read())
179
+ f.close()
180
+ event_dict['feedback'] = {'score': fb_score, 'text': fb_text}
181
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
182
+ f.write(str(event_dict))
183
+ f.close()
184
+ return 'Submit successfully, thank you for your comments!'
185
+ else:
186
+ return 'Submit failed, the server is not set to log history.'
187
+
188
+
189
+ title_md = """
190
+ # **SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration**
191
+
192
+ ⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
193
+
194
+ [[Paper](https://arxiv.org/abs/2401.13627)] &emsp; [[Project Page](http://supir.xpixel.group/)] &emsp; [[How to play](https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png)]
195
+ """
196
+
197
+
198
+ claim_md = """
199
+ ## **Terms of use**
200
+
201
+ By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
202
+
203
+ ## **License**
204
+
205
+ The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
206
+ """
207
+
208
+
209
+ block = gr.Blocks(title='SUPIR').queue()
210
+ with block:
211
+ with gr.Row():
212
+ gr.Markdown(title_md)
213
+ with gr.Row():
214
+ with gr.Column():
215
+ with gr.Row(equal_height=True):
216
+ with gr.Column():
217
+ gr.Markdown("<center>Input</center>")
218
+ input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
219
+ with gr.Column():
220
+ gr.Markdown("<center>Stage1 Output</center>")
221
+ denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
222
+ prompt = gr.Textbox(label="Prompt", value="")
223
+ with gr.Accordion("Stage1 options", open=False):
224
+ gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
225
+ with gr.Accordion("LLaVA options", open=False):
226
+ temperature = gr.Slider(label="Temperature", minimum=0., maximum=1.0, value=0.2, step=0.1)
227
+ top_p = gr.Slider(label="Top P", minimum=0., maximum=1.0, value=0.7, step=0.1)
228
+ qs = gr.Textbox(label="Question", value="Describe this image and its style in a very detailed manner. "
229
+ "The image is a realistic photography, not an art painting.")
230
+ with gr.Accordion("Stage2 options", open=False):
231
+ num_samples = gr.Slider(label="Num Samples", minimum=1, maximum=4 if not args.use_image_slider else 1
232
+ , value=1, step=1)
233
+ upscale = gr.Slider(label="Upscale", minimum=1, maximum=8, value=1, step=1)
234
+ edm_steps = gr.Slider(label="Steps", minimum=1, maximum=200, value=default_setting.edm_steps, step=1)
235
+ s_cfg = gr.Slider(label="Text Guidance Scale", minimum=1.0, maximum=15.0,
236
+ value=default_setting.s_cfg_Quality, step=0.1)
237
+ s_stage2 = gr.Slider(label="Stage2 Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
238
+ s_stage1 = gr.Slider(label="Stage1 Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
239
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
240
+ s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
241
+ s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
242
+ a_prompt = gr.Textbox(label="Default Positive Prompt",
243
+ value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
244
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
245
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
246
+ 'hyper sharpness, perfect without deformations.')
247
+ n_prompt = gr.Textbox(label="Default Negative Prompt",
248
+ value='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
249
+ 'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
250
+ 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
251
+ 'deformed, lowres, over-smooth')
252
+ with gr.Row():
253
+ with gr.Column():
254
+ linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
255
+ spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
256
+ maximum=9.0, value=default_setting.spt_linear_CFG_Quality, step=0.5)
257
+ with gr.Column():
258
+ linear_s_stage2 = gr.Checkbox(label="Linear Stage2 Guidance", value=False)
259
+ spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
260
+ maximum=1., value=0., step=0.05)
261
+ with gr.Row():
262
+ with gr.Column():
263
+ diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
264
+ interactive=True)
265
+ with gr.Column():
266
+ ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
267
+ interactive=True)
268
+ with gr.Column():
269
+ color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", value="Wavelet",
270
+ interactive=True)
271
+ with gr.Column():
272
+ model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", value="v0-Q",
273
+ interactive=True)
274
+
275
+ with gr.Column():
276
+ gr.Markdown("<center>Stage2 Output</center>")
277
+ if not args.use_image_slider:
278
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
279
+ else:
280
+ result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
281
+ with gr.Row():
282
+ with gr.Column():
283
+ denoise_button = gr.Button(value="Stage1 Run")
284
+ with gr.Column():
285
+ llave_button = gr.Button(value="LlaVa Run")
286
+ with gr.Column():
287
+ diffusion_button = gr.Button(value="Stage2 Run")
288
+ with gr.Row():
289
+ with gr.Column():
290
+ param_setting = gr.Dropdown(["Quality", "Fidelity"], interactive=True, label="Param Setting",
291
+ value="Quality")
292
+ with gr.Column():
293
+ restart_button = gr.Button(value="Reset Param", scale=2)
294
+ with gr.Accordion("Feedback", open=True):
295
+ fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1,
296
+ interactive=True)
297
+ fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.')
298
+ submit_button = gr.Button(value="Submit Feedback")
299
+ with gr.Row():
300
+ gr.Markdown(claim_md)
301
+ event_id = gr.Textbox(label="Event ID", value="", visible=False)
302
+
303
+ llave_button.click(fn=llave_process, inputs=[denoise_image, temperature, top_p, qs], outputs=[prompt])
304
+ denoise_button.click(fn=stage1_process, inputs=[input_image, gamma_correction],
305
+ outputs=[denoise_image])
306
+ stage2_ips = [input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
307
+ s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
308
+ linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select]
309
+ diffusion_button.click(fn=stage2_process, inputs=stage2_ips, outputs=[result_gallery, event_id, fb_score, fb_text])
310
+ restart_button.click(fn=load_and_reset, inputs=[param_setting],
311
+ outputs=[edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt,
312
+ color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2])
313
+ submit_button.click(fn=submit_feedback, inputs=[event_id, fb_score, fb_text], outputs=[fb_text])
314
+ block.launch(server_name=server_ip, server_port=server_port)
gradio_demo_face.py ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import gradio as gr
4
+ from gradio_imageslider import ImageSlider
5
+ import argparse
6
+ from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
7
+ import numpy as np
8
+ import torch
9
+ from SUPIR.util import create_SUPIR_model, load_QF_ckpt
10
+ from PIL import Image
11
+ from llava.llava_agent import LLavaAgent
12
+ from CKPT_PTH import LLAVA_MODEL_PATH
13
+ import einops
14
+ import copy
15
+ import time
16
+ from omegaconf import OmegaConf
17
+ from SUPIR.utils.face_restoration_helper import FaceRestoreHelper
18
+
19
+ parser = argparse.ArgumentParser()
20
+ parser.add_argument("--ip", type=str, default='127.0.0.1')
21
+ parser.add_argument("--port", type=int, default='6688')
22
+ parser.add_argument("--no_llava", action='store_true', default=False)
23
+ parser.add_argument("--use_image_slider", action='store_true', default=False)
24
+ parser.add_argument("--log_history", action='store_true', default=False)
25
+ parser.add_argument("--loading_half_params", action='store_true', default=False)
26
+ parser.add_argument("--use_tile_vae", action='store_true', default=False)
27
+ parser.add_argument("--load_8bit_llava", action='store_true', default=False)
28
+ parser.add_argument("--local_prompt", action='store_true', default=False)
29
+ args = parser.parse_args()
30
+ server_ip = args.ip
31
+ server_port = args.port
32
+ use_llava = not args.no_llava
33
+
34
+ if torch.cuda.device_count() >= 2:
35
+ SUPIR_device = 'cuda:0'
36
+ LLaVA_device = 'cuda:1'
37
+ elif torch.cuda.device_count() == 1:
38
+ SUPIR_device = 'cuda:0'
39
+ LLaVA_device = 'cuda:0'
40
+ else:
41
+ raise ValueError('Currently support CUDA only.')
42
+
43
+ # load SUPIR
44
+ config_path = 'options/SUPIR_v0.yaml'
45
+ config = OmegaConf.load(config_path)
46
+ model = create_SUPIR_model(config_path, SUPIR_sign='Q')
47
+ if args.loading_half_params:
48
+ model = model.half()
49
+ if args.use_tile_vae:
50
+ model.init_tile_vae(encoder_tile_size=512, decoder_tile_size=64)
51
+ model = model.to(SUPIR_device)
52
+ model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
53
+ model.current_model = 'v0-Q'
54
+ ckpt_Q, ckpt_F = load_QF_ckpt('options/SUPIR_v0.yaml')
55
+
56
+ # load LLaVA
57
+ if use_llava:
58
+ llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
59
+ else:
60
+ llava_agent = None
61
+
62
+ # load face helper
63
+ face_helper = FaceRestoreHelper(
64
+ device=SUPIR_device,
65
+ upscale_factor=1,
66
+ face_size=1024,
67
+ use_parse=True,
68
+ det_model='retinaface_resnet50'
69
+ )
70
+
71
+ # only exhibit the overall quality of the stage1 output
72
+ def stage1_process(input_image, gamma_correction):
73
+ torch.cuda.set_device(SUPIR_device)
74
+ LQ = HWC3(input_image)
75
+ LQ = fix_resize(LQ, 512)
76
+ # stage1
77
+ LQ = np.array(LQ) / 255 * 2 - 1
78
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
79
+ LQ = model.batchify_denoise(LQ, is_stage1=True)
80
+ LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
81
+ # gamma correction
82
+ LQ = LQ / 255.0
83
+ LQ = np.power(LQ, gamma_correction)
84
+ LQ *= 255.0
85
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
86
+ return LQ
87
+
88
+ def llave_process(input_image, upscale, temperature, top_p, qs=None):
89
+ torch.cuda.set_device(SUPIR_device)
90
+ input_image = HWC3(input_image)
91
+ input_image = upscale_image(input_image, upscale, unit_resolution=32,
92
+ min_size=1024)
93
+ LQ = np.array(input_image) / 255 * 2 - 1
94
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
95
+ LQ = model.batchify_denoise(LQ, is_stage1=True)
96
+
97
+ LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
98
+ LQs = [Image.fromarray(LQ)]
99
+
100
+ face_helper.clean_all()
101
+ face_helper.read_image(LQ)
102
+ # get face landmarks for each face
103
+ face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
104
+ face_helper.align_warp_face()
105
+
106
+ for face in face_helper.cropped_faces:
107
+ LQs.append(Image.fromarray(face))
108
+
109
+ captions = []
110
+ torch.cuda.set_device(LLaVA_device)
111
+ if use_llava:
112
+ for LQ in LQs:
113
+ captions += llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
114
+ else:
115
+ captions = ['LLaVA is not available. Please add text manually.']
116
+ del LQs[0]
117
+ return str(captions), [np.array(face) for face in LQs]
118
+
119
+
120
+ def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
121
+ s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
122
+ linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select,
123
+ face_resolution, apply_bg, apply_face):
124
+ torch.cuda.set_device(SUPIR_device)
125
+ event_id = str(time.time_ns())
126
+ event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
127
+ 'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
128
+ 's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
129
+ 's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
130
+ 'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
131
+ 'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
132
+ 'model_select': model_select}
133
+
134
+ if model_select != model.current_model:
135
+ if model_select == 'v0-Q':
136
+ print('load v0-Q')
137
+ model.load_state_dict(ckpt_Q, strict=False)
138
+ model.current_model = 'v0-Q'
139
+ elif model_select == 'v0-F':
140
+ print('load v0-F')
141
+ model.load_state_dict(ckpt_F, strict=False)
142
+ model.current_model = 'v0-F'
143
+ input_image = HWC3(input_image)
144
+ input_image = upscale_image(input_image, upscale, unit_resolution=32,
145
+ min_size=1024)
146
+
147
+ LQ = np.array(input_image)
148
+ face_helper.clean_all()
149
+ face_helper.read_image(LQ)
150
+ # get face landmarks for each face
151
+ face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
152
+ face_helper.align_warp_face()
153
+
154
+ LQ = LQ / 255 * 2 - 1
155
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
156
+
157
+ if use_llava and prompt != '':
158
+ captions = eval(prompt)
159
+ else:
160
+ captions = [''] * (1 + len(face_helper.cropped_faces))
161
+
162
+ bg_caption, face_captions = captions[0], captions[1:]
163
+
164
+ model.ae_dtype = convert_dtype(ae_dtype)
165
+ model.model.dtype = convert_dtype(diff_dtype)
166
+
167
+ _faces = []
168
+ if apply_face:
169
+ faces = []
170
+ for face in face_helper.cropped_faces:
171
+ _faces.append(face)
172
+ face = np.array(face) / 255 * 2 - 1
173
+ face = torch.tensor(face, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
174
+ faces.append(face)
175
+
176
+ for face, caption in zip(faces, face_captions):
177
+ caption = [caption]
178
+
179
+ from torch.nn.functional import interpolate
180
+ face = interpolate(face, size=face_resolution, mode='bilinear', align_corners=False)
181
+ if face_resolution < 1024:
182
+ face = torch.nn.functional.pad(face, (512-face_resolution//2, 512-face_resolution//2,
183
+ 512-face_resolution//2, 512-face_resolution//2), 'constant', 0)
184
+
185
+ samples = model.batchify_sample(face, caption, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
186
+ s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
187
+ num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
188
+ use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
189
+ cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
190
+ if face_resolution < 1024:
191
+ samples = samples[:, :, 512-face_resolution//2:512+face_resolution//2,
192
+ 512-face_resolution//2:512+face_resolution//2]
193
+ samples = interpolate(samples, size=face_helper.face_size, mode='bilinear', align_corners=False)
194
+ x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
195
+ 0, 255).astype(np.uint8)
196
+
197
+ face_helper.add_restored_face(x_samples[0])
198
+ _faces.append(x_samples[0])
199
+
200
+ if apply_bg:
201
+ caption = [bg_caption]
202
+ samples = model.batchify_sample(LQ, caption, num_steps=edm_steps, restoration_scale=s_stage1,
203
+ s_churn=s_churn,
204
+ s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
205
+ num_samples=num_samples, p_p=a_prompt, n_p=n_prompt,
206
+ color_fix_type=color_fix_type,
207
+ use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
208
+ cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
209
+ else:
210
+ samples = LQ
211
+ _bg = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
212
+ 0, 255).astype(np.uint8)
213
+ face_helper.get_inverse_affine(None)
214
+ results = [face_helper.paste_faces_to_input_image(upsample_img=_bg[0])]
215
+ else:
216
+ caption = [bg_caption]
217
+ samples = model.batchify_sample(LQ, caption, num_steps=edm_steps, restoration_scale=s_stage1,
218
+ s_churn=s_churn,
219
+ s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
220
+ num_samples=num_samples, p_p=a_prompt, n_p=n_prompt,
221
+ color_fix_type=color_fix_type,
222
+ use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
223
+ cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
224
+ x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
225
+ 0, 255).astype(np.uint8)
226
+ results = [x_samples[0]]
227
+
228
+ if args.log_history:
229
+ os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
230
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
231
+ f.write(str(event_dict))
232
+ f.close()
233
+ Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
234
+ for i, result in enumerate(results):
235
+ Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
236
+ return [input_image] + results, event_id, 3, '', _faces
237
+
238
+ def load_and_reset(param_setting):
239
+ edm_steps = 50
240
+ s_stage2 = 1.0
241
+ s_stage1 = -1.0
242
+ s_churn = 5
243
+ s_noise = 1.003
244
+ a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
245
+ 'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
246
+ 'detailing, hyper sharpness, perfect without deformations.'
247
+ n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, CG Style, ' \
248
+ '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
249
+ 'signature, jpeg artifacts, deformed, lowres, over-smooth'
250
+ color_fix_type = 'Wavelet'
251
+ spt_linear_s_stage2 = 0.0
252
+ linear_s_stage2 = False
253
+ linear_CFG = True
254
+ if param_setting == "Quality":
255
+ s_cfg = 7.5
256
+ spt_linear_CFG = 4.0
257
+ elif param_setting == "Fidelity":
258
+ s_cfg = 4.0
259
+ spt_linear_CFG = 1.0
260
+ else:
261
+ raise NotImplementedError
262
+ return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
263
+ linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2
264
+
265
+
266
+ def submit_feedback(event_id, fb_score, fb_text):
267
+ if args.log_history:
268
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f:
269
+ event_dict = eval(f.read())
270
+ f.close()
271
+ event_dict['feedback'] = {'score': fb_score, 'text': fb_text}
272
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
273
+ f.write(str(event_dict))
274
+ f.close()
275
+ return 'Submit successfully, thank you for your comments!'
276
+ else:
277
+ return 'Submit failed, the server is not set to log history.'
278
+
279
+ title_md = """
280
+ # **SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration**
281
+
282
+ ⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
283
+
284
+ [[Paper](https://arxiv.org/abs/2401.13627)] &emsp; [[Project Page](http://supir.xpixel.group/)] &emsp; [[How to play](https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png)]
285
+ """
286
+
287
+
288
+ claim_md = """
289
+ ## **Terms of use**
290
+
291
+ By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
292
+
293
+ ## **License**
294
+
295
+ The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
296
+ """
297
+
298
+
299
+ block = gr.Blocks(title='SUPIR').queue()
300
+ with block:
301
+ with gr.Row():
302
+ gr.Markdown(title_md)
303
+ with gr.Row():
304
+ with gr.Column():
305
+ with gr.Row(equal_height=True):
306
+ with gr.Column():
307
+ gr.Markdown("<center>Input</center>")
308
+ input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
309
+ with gr.Column():
310
+ gr.Markdown("<center>Stage1 Output</center>")
311
+ denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
312
+ prompt = gr.Textbox(label="Prompt", value="")
313
+ with gr.Accordion("Stage1 options", open=False):
314
+ gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
315
+ with gr.Accordion("LLaVA options", open=False):
316
+ temperature = gr.Slider(label="Temperature", minimum=0., maximum=1.0, value=0.2, step=0.1)
317
+ top_p = gr.Slider(label="Top P", minimum=0., maximum=1.0, value=0.7, step=0.1)
318
+ qs = gr.Textbox(label="Question", value="Describe this image and its style in a very detailed manner. "
319
+ "The image is a realistic photography, not an art painting.")
320
+ with gr.Accordion("Stage2 options", open=False):
321
+ num_samples = gr.Slider(label="Num Samples", minimum=1, maximum=4 if not args.use_image_slider else 1
322
+ , value=1, step=1)
323
+ upscale = gr.Slider(label="Upscale", minimum=1, maximum=8, value=1, step=1)
324
+ edm_steps = gr.Slider(label="Steps", minimum=20, maximum=200, value=50, step=1)
325
+ s_cfg = gr.Slider(label="Text Guidance Scale", minimum=1.0, maximum=15.0, value=7.5, step=0.1)
326
+ s_stage2 = gr.Slider(label="Stage2 Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
327
+ s_stage1 = gr.Slider(label="Stage1 Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
328
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
329
+ s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
330
+ s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
331
+ a_prompt = gr.Textbox(label="Default Positive Prompt",
332
+ value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
333
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
334
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
335
+ 'hyper sharpness, perfect without deformations.')
336
+ n_prompt = gr.Textbox(label="Default Negative Prompt",
337
+ value='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
338
+ 'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
339
+ 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
340
+ 'deformed, lowres, over-smooth')
341
+ with gr.Row():
342
+ with gr.Column():
343
+ linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
344
+ spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
345
+ maximum=9.0, value=4.0, step=0.5)
346
+ with gr.Column():
347
+ linear_s_stage2 = gr.Checkbox(label="Linear Stage2 Guidance", value=False)
348
+ spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
349
+ maximum=1., value=0., step=0.05)
350
+ with gr.Row():
351
+ with gr.Column():
352
+ diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
353
+ interactive=True)
354
+ with gr.Column():
355
+ ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
356
+ interactive=True)
357
+ with gr.Column():
358
+ color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", value="Wavelet",
359
+ interactive=True)
360
+ with gr.Column():
361
+ model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", value="v0-Q",
362
+ interactive=True)
363
+
364
+ with gr.Column():
365
+ gr.Markdown("<center>Stage2 Output</center>")
366
+ if not args.use_image_slider:
367
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
368
+ else:
369
+ result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
370
+ with gr.Row():
371
+ with gr.Column():
372
+ denoise_button = gr.Button(value="Stage1 Run")
373
+ with gr.Column():
374
+ llave_button = gr.Button(value="LlaVa Run")
375
+ with gr.Column():
376
+ diffusion_button = gr.Button(value="Stage2 Run")
377
+ with gr.Row():
378
+ with gr.Column():
379
+ param_setting = gr.Dropdown(["Quality", "Fidelity"], interactive=True, label="Param Setting",
380
+ value="Quality")
381
+ with gr.Column():
382
+ restart_button = gr.Button(value="Reset Param", scale=2)
383
+ with gr.Accordion("Face Options", open=True):
384
+ face_resolution = gr.Slider(label="Text Guidance Scale", minimum=256, maximum=2048, value=1024, step=32)
385
+ with gr.Row():
386
+ with gr.Column():
387
+ apply_bg = gr.Checkbox(label="BG restoration", value=True)
388
+ with gr.Column():
389
+ apply_face = gr.Checkbox(label="Face restoration", value=True)
390
+ with gr.Accordion("Feedback", open=False):
391
+ fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1,
392
+ interactive=True)
393
+ fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.')
394
+ submit_button = gr.Button(value="Submit Feedback")
395
+ face_gallery = gr.Gallery(label='Faces', show_label=False, elem_id="gallery2")
396
+ with gr.Row():
397
+ gr.Markdown(claim_md)
398
+ event_id = gr.Textbox(label="Event ID", value="", visible=False)
399
+
400
+ llave_button.click(fn=llave_process, inputs=[input_image, upscale, temperature, top_p, qs], outputs=[prompt, face_gallery])
401
+ denoise_button.click(fn=stage1_process, inputs=[input_image, gamma_correction],
402
+ outputs=[denoise_image])
403
+ stage2_ips = [input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
404
+ s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
405
+ linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, face_resolution, apply_bg, apply_face]
406
+ diffusion_button.click(fn=stage2_process, inputs=stage2_ips, outputs=[result_gallery, event_id, fb_score, fb_text, face_gallery])
407
+ restart_button.click(fn=load_and_reset, inputs=[param_setting],
408
+ outputs=[edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt,
409
+ color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2])
410
+ submit_button.click(fn=submit_feedback, inputs=[event_id, fb_score, fb_text], outputs=[fb_text])
411
+ block.launch(server_name=server_ip, server_port=server_port)
gradio_demo_tiled.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import gradio as gr
4
+ from gradio_imageslider import ImageSlider
5
+ import argparse
6
+ from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
7
+ import numpy as np
8
+ import torch
9
+ from SUPIR.util import create_SUPIR_model, load_QF_ckpt
10
+ from PIL import Image
11
+ from llava.llava_agent import LLavaAgent
12
+ from CKPT_PTH import LLAVA_MODEL_PATH
13
+ import einops
14
+ import copy
15
+ import time
16
+ from omegaconf import OmegaConf
17
+ from sgm.modules.diffusionmodules.sampling import _sliding_windows
18
+
19
+ parser = argparse.ArgumentParser()
20
+ parser.add_argument("--ip", type=str, default='127.0.0.1')
21
+ parser.add_argument("--port", type=int, default='6688')
22
+ parser.add_argument("--no_llava", action='store_true', default=False)
23
+ parser.add_argument("--use_image_slider", action='store_true', default=False)
24
+ parser.add_argument("--log_history", action='store_true', default=False)
25
+ parser.add_argument("--loading_half_params", action='store_true', default=False)
26
+ parser.add_argument("--use_tile_vae", action='store_true', default=False)
27
+ parser.add_argument("--encoder_tile_size", type=int, default=512)
28
+ parser.add_argument("--decoder_tile_size", type=int, default=64)
29
+ parser.add_argument("--load_8bit_llava", action='store_true', default=False)
30
+ parser.add_argument("--local_prompt", action='store_true', default=False)
31
+ args = parser.parse_args()
32
+ server_ip = args.ip
33
+ server_port = args.port
34
+ use_llava = not args.no_llava
35
+
36
+ if torch.cuda.device_count() >= 2:
37
+ SUPIR_device = 'cuda:0'
38
+ LLaVA_device = 'cuda:1'
39
+ elif torch.cuda.device_count() == 1:
40
+ SUPIR_device = 'cuda:0'
41
+ LLaVA_device = 'cuda:0'
42
+ else:
43
+ raise ValueError('Currently support CUDA only.')
44
+
45
+ # load SUPIR
46
+ config_path = 'options/SUPIR_v0_tiled.yaml'
47
+ config = OmegaConf.load(config_path)
48
+ model = create_SUPIR_model(config_path, SUPIR_sign='Q')
49
+ if args.loading_half_params:
50
+ model = model.half()
51
+ if args.use_tile_vae:
52
+ model.init_tile_vae(encoder_tile_size=512, decoder_tile_size=64)
53
+ model = model.to(SUPIR_device)
54
+ model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
55
+ model.current_model = 'v0-Q'
56
+ ckpt_Q, ckpt_F = load_QF_ckpt('options/SUPIR_v0.yaml')
57
+
58
+ tile_size = config.model.params.sampler_config.params.tile_size * 8
59
+ tile_stride = config.model.params.sampler_config.params.tile_stride * 8
60
+
61
+ # load LLaVA
62
+ if use_llava:
63
+ llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
64
+ else:
65
+ llava_agent = None
66
+
67
+ # only exhibit the overall quality of the stage1 output
68
+ def stage1_process(input_image, gamma_correction):
69
+ torch.cuda.set_device(SUPIR_device)
70
+ LQ = HWC3(input_image)
71
+ LQ = fix_resize(LQ, 512)
72
+ # stage1
73
+ LQ = np.array(LQ) / 255 * 2 - 1
74
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
75
+ LQ = model.batchify_denoise(LQ, is_stage1=True)
76
+ LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
77
+ # gamma correction
78
+ LQ = LQ / 255.0
79
+ LQ = np.power(LQ, gamma_correction)
80
+ LQ *= 255.0
81
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
82
+ return LQ
83
+
84
+ def llave_process(input_image, upscale, temperature, top_p, qs=None):
85
+ torch.cuda.set_device(SUPIR_device)
86
+ input_image = HWC3(input_image)
87
+ input_image = upscale_image(input_image, upscale, unit_resolution=32,
88
+ min_size=1024)
89
+ LQ = np.array(input_image) / 255.0
90
+ LQ *= 255.0
91
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
92
+ LQ = LQ / 255 * 2 - 1
93
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
94
+ LQ = model.batchify_denoise(LQ, is_stage1=True)
95
+
96
+ _, _, h, w = LQ.shape
97
+ tiles_iterator = _sliding_windows(h, w, tile_size, tile_stride)
98
+ LQ_tiles = []
99
+ for hi, hi_end, wi, wi_end in tiles_iterator:
100
+ _LQ = LQ[:, :, hi:hi_end, wi:wi_end]
101
+ _LQ = (_LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
102
+ LQ_tiles.append(Image.fromarray(_LQ))
103
+
104
+ captions = []
105
+ torch.cuda.set_device(LLaVA_device)
106
+ if use_llava:
107
+ for LQ_tile in LQ_tiles:
108
+ captions += llava_agent.gen_image_caption([LQ_tile], temperature=temperature, top_p=top_p, qs=qs)
109
+ else:
110
+ captions = 'LLaVA is not available. Please add text manually.'
111
+ return str(captions)
112
+
113
+
114
+ def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
115
+ s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
116
+ linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select):
117
+ torch.cuda.set_device(SUPIR_device)
118
+ event_id = str(time.time_ns())
119
+ event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
120
+ 'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
121
+ 's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
122
+ 's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
123
+ 'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
124
+ 'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
125
+ 'model_select': model_select}
126
+
127
+ if model_select != model.current_model:
128
+ if model_select == 'v0-Q':
129
+ print('load v0-Q')
130
+ model.load_state_dict(ckpt_Q, strict=False)
131
+ model.current_model = 'v0-Q'
132
+ elif model_select == 'v0-F':
133
+ print('load v0-F')
134
+ model.load_state_dict(ckpt_F, strict=False)
135
+ model.current_model = 'v0-F'
136
+ input_image = HWC3(input_image)
137
+ input_image = upscale_image(input_image, upscale, unit_resolution=32,
138
+ min_size=1024)
139
+
140
+ LQ = np.array(input_image) / 255.0
141
+ LQ = np.power(LQ, gamma_correction)
142
+ LQ *= 255.0
143
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
144
+ LQ = LQ / 255 * 2 - 1
145
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
146
+ if use_llava:
147
+ captions = [eval(prompt)]
148
+ else:
149
+ captions = ['']
150
+
151
+ model.ae_dtype = convert_dtype(ae_dtype)
152
+ model.model.dtype = convert_dtype(diff_dtype)
153
+
154
+ samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
155
+ s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
156
+ num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
157
+ use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
158
+ cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
159
+
160
+ x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
161
+ 0, 255).astype(np.uint8)
162
+ results = [x_samples[i] for i in range(num_samples)]
163
+
164
+ if args.log_history:
165
+ os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
166
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
167
+ f.write(str(event_dict))
168
+ f.close()
169
+ Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
170
+ for i, result in enumerate(results):
171
+ Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
172
+ return [input_image] + results, event_id, 3, ''
173
+
174
+ def load_and_reset(param_setting):
175
+ edm_steps = 50
176
+ s_stage2 = 1.0
177
+ s_stage1 = -1.0
178
+ s_churn = 5
179
+ s_noise = 1.003
180
+ a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
181
+ 'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
182
+ 'detailing, hyper sharpness, perfect without deformations.'
183
+ n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, CG Style, ' \
184
+ '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
185
+ 'signature, jpeg artifacts, deformed, lowres, over-smooth'
186
+ color_fix_type = 'Wavelet'
187
+ spt_linear_s_stage2 = 0.0
188
+ linear_s_stage2 = False
189
+ linear_CFG = True
190
+ if param_setting == "Quality":
191
+ s_cfg = 7.5
192
+ spt_linear_CFG = 4.0
193
+ elif param_setting == "Fidelity":
194
+ s_cfg = 4.0
195
+ spt_linear_CFG = 1.0
196
+ else:
197
+ raise NotImplementedError
198
+ return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
199
+ linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2
200
+
201
+
202
+ def submit_feedback(event_id, fb_score, fb_text):
203
+ if args.log_history:
204
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f:
205
+ event_dict = eval(f.read())
206
+ f.close()
207
+ event_dict['feedback'] = {'score': fb_score, 'text': fb_text}
208
+ with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
209
+ f.write(str(event_dict))
210
+ f.close()
211
+ return 'Submit successfully, thank you for your comments!'
212
+ else:
213
+ return 'Submit failed, the server is not set to log history.'
214
+
215
+ title_md = """
216
+ # **SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration**
217
+
218
+ ⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
219
+
220
+ [[Paper](https://arxiv.org/abs/2401.13627)] &emsp; [[Project Page](http://supir.xpixel.group/)] &emsp; [[How to play](https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png)]
221
+ """
222
+
223
+
224
+ claim_md = """
225
+ ## **Terms of use**
226
+
227
+ By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
228
+
229
+ ## **License**
230
+
231
+ The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
232
+ """
233
+
234
+
235
+ block = gr.Blocks(title='SUPIR').queue()
236
+ with block:
237
+ with gr.Row():
238
+ gr.Markdown(title_md)
239
+ with gr.Row():
240
+ with gr.Column():
241
+ with gr.Row(equal_height=True):
242
+ with gr.Column():
243
+ gr.Markdown("<center>Input</center>")
244
+ input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
245
+ with gr.Column():
246
+ gr.Markdown("<center>Stage1 Output</center>")
247
+ denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
248
+ prompt = gr.Textbox(label="Prompt", value="")
249
+ with gr.Accordion("Stage1 options", open=False):
250
+ gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
251
+ with gr.Accordion("LLaVA options", open=False):
252
+ temperature = gr.Slider(label="Temperature", minimum=0., maximum=1.0, value=0.2, step=0.1)
253
+ top_p = gr.Slider(label="Top P", minimum=0., maximum=1.0, value=0.7, step=0.1)
254
+ qs = gr.Textbox(label="Question", value="Describe this image and its style in a very detailed manner. "
255
+ "The image is a realistic photography, not an art painting.")
256
+ with gr.Accordion("Stage2 options", open=False):
257
+ num_samples = gr.Slider(label="Num Samples", minimum=1, maximum=4 if not args.use_image_slider else 1
258
+ , value=1, step=1)
259
+ upscale = gr.Slider(label="Upscale", minimum=1, maximum=8, value=1, step=1)
260
+ edm_steps = gr.Slider(label="Steps", minimum=20, maximum=200, value=50, step=1)
261
+ s_cfg = gr.Slider(label="Text Guidance Scale", minimum=1.0, maximum=15.0, value=7.5, step=0.1)
262
+ s_stage2 = gr.Slider(label="Stage2 Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
263
+ s_stage1 = gr.Slider(label="Stage1 Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
264
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
265
+ s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
266
+ s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
267
+ a_prompt = gr.Textbox(label="Default Positive Prompt",
268
+ value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
269
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
270
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
271
+ 'hyper sharpness, perfect without deformations.')
272
+ n_prompt = gr.Textbox(label="Default Negative Prompt",
273
+ value='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
274
+ 'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
275
+ 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
276
+ 'deformed, lowres, over-smooth')
277
+ with gr.Row():
278
+ with gr.Column():
279
+ linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
280
+ spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
281
+ maximum=9.0, value=4.0, step=0.5)
282
+ with gr.Column():
283
+ linear_s_stage2 = gr.Checkbox(label="Linear Stage2 Guidance", value=False)
284
+ spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
285
+ maximum=1., value=0., step=0.05)
286
+ with gr.Row():
287
+ with gr.Column():
288
+ diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
289
+ interactive=True)
290
+ with gr.Column():
291
+ ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
292
+ interactive=True)
293
+ with gr.Column():
294
+ color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", value="Wavelet",
295
+ interactive=True)
296
+ with gr.Column():
297
+ model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", value="v0-Q",
298
+ interactive=True)
299
+
300
+ with gr.Column():
301
+ gr.Markdown("<center>Stage2 Output</center>")
302
+ if not args.use_image_slider:
303
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
304
+ else:
305
+ result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
306
+ with gr.Row():
307
+ with gr.Column():
308
+ denoise_button = gr.Button(value="Stage1 Run")
309
+ with gr.Column():
310
+ llave_button = gr.Button(value="LlaVa Run")
311
+ with gr.Column():
312
+ diffusion_button = gr.Button(value="Stage2 Run")
313
+ with gr.Row():
314
+ with gr.Column():
315
+ param_setting = gr.Dropdown(["Quality", "Fidelity"], interactive=True, label="Param Setting",
316
+ value="Quality")
317
+ with gr.Column():
318
+ restart_button = gr.Button(value="Reset Param", scale=2)
319
+ with gr.Accordion("Feedback", open=True):
320
+ fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1,
321
+ interactive=True)
322
+ fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.')
323
+ submit_button = gr.Button(value="Submit Feedback")
324
+ with gr.Row():
325
+ gr.Markdown(claim_md)
326
+ event_id = gr.Textbox(label="Event ID", value="", visible=False)
327
+
328
+ llave_button.click(fn=llave_process, inputs=[input_image, upscale, temperature, top_p, qs], outputs=[prompt])
329
+ denoise_button.click(fn=stage1_process, inputs=[input_image, gamma_correction],
330
+ outputs=[denoise_image])
331
+ stage2_ips = [input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
332
+ s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
333
+ linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select]
334
+ diffusion_button.click(fn=stage2_process, inputs=stage2_ips, outputs=[result_gallery, event_id, fb_score, fb_text])
335
+ restart_button.click(fn=load_and_reset, inputs=[param_setting],
336
+ outputs=[edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt,
337
+ color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2])
338
+ submit_button.click(fn=submit_feedback, inputs=[event_id, fb_score, fb_text], outputs=[fb_text])
339
+ block.launch(server_name=server_ip, server_port=server_port)
requirements.txt CHANGED
@@ -1,8 +1,42 @@
1
- torchvision
2
- diffusers
3
- transformers
4
- accelerate
5
- ftfy
6
- scipy
7
- imageio
8
- invisible_watermark
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ fastapi==0.95.1
2
+ gradio==4.16.0
3
+ gradio_imageslider==0.0.17
4
+ gradio_client==0.8.1
5
+ Markdown==3.4.1
6
+ numpy==1.24.2
7
+ requests==2.28.2
8
+ sentencepiece==0.1.98
9
+ tokenizers==0.13.3
10
+ torch>=2.1.0
11
+ torchvision>=0.16.0
12
+ uvicorn==0.21.1
13
+ wandb==0.14.0
14
+ httpx==0.24.0
15
+ transformers==4.28.1
16
+ accelerate==0.18.0
17
+ scikit-learn==1.2.2
18
+ sentencepiece==0.1.98
19
+ einops==0.7.0
20
+ einops-exts==0.0.4
21
+ timm==0.9.8
22
+ openai-clip==1.0.1
23
+ fsspec==2023.4.0
24
+ kornia==0.6.9
25
+ matplotlib==3.7.1
26
+ ninja==1.11.1
27
+ omegaconf==2.3.0
28
+ open-clip-torch==2.17.1
29
+ opencv-python==4.7.0.72
30
+ pandas==2.0.1
31
+ Pillow==9.4.0
32
+ pytorch-lightning==2.1.2
33
+ PyYAML==6.0
34
+ scipy==1.9.1
35
+ tqdm==4.65.0
36
+ triton==2.1.0
37
+ urllib3==1.26.15
38
+ webdataset==0.2.48
39
+ xformers>=0.0.20
40
+ facexlib==0.3.0
41
+ k-diffusion==0.1.1.post1
42
+ diffusers==0.16.1
test.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.cuda
2
+ import argparse
3
+ from SUPIR.util import create_SUPIR_model, PIL2Tensor, Tensor2PIL, convert_dtype
4
+ from PIL import Image
5
+ from llava.llava_agent import LLavaAgent
6
+ from CKPT_PTH import LLAVA_MODEL_PATH
7
+ import os
8
+ from torch.nn.functional import interpolate
9
+
10
+ if torch.cuda.device_count() >= 2:
11
+ SUPIR_device = 'cuda:0'
12
+ LLaVA_device = 'cuda:1'
13
+ elif torch.cuda.device_count() == 1:
14
+ SUPIR_device = 'cuda:0'
15
+ LLaVA_device = 'cuda:0'
16
+ else:
17
+ raise ValueError('Currently support CUDA only.')
18
+
19
+ # hyparams here
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument("--img_dir", type=str)
22
+ parser.add_argument("--save_dir", type=str)
23
+ parser.add_argument("--upscale", type=int, default=1)
24
+ parser.add_argument("--SUPIR_sign", type=str, default='Q', choices=['F', 'Q'])
25
+ parser.add_argument("--seed", type=int, default=1234)
26
+ parser.add_argument("--min_size", type=int, default=1024)
27
+ parser.add_argument("--edm_steps", type=int, default=50)
28
+ parser.add_argument("--s_stage1", type=int, default=-1)
29
+ parser.add_argument("--s_churn", type=int, default=5)
30
+ parser.add_argument("--s_noise", type=float, default=1.003)
31
+ parser.add_argument("--s_cfg", type=float, default=7.5)
32
+ parser.add_argument("--s_stage2", type=float, default=1.)
33
+ parser.add_argument("--num_samples", type=int, default=1)
34
+ parser.add_argument("--a_prompt", type=str,
35
+ default='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
36
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
37
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
38
+ 'hyper sharpness, perfect without deformations.')
39
+ parser.add_argument("--n_prompt", type=str,
40
+ default='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
41
+ 'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
42
+ 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
43
+ 'deformed, lowres, over-smooth')
44
+ parser.add_argument("--color_fix_type", type=str, default='Wavelet', choices=["None", "AdaIn", "Wavelet"])
45
+ parser.add_argument("--linear_CFG", action='store_true', default=True)
46
+ parser.add_argument("--linear_s_stage2", action='store_true', default=False)
47
+ parser.add_argument("--spt_linear_CFG", type=float, default=4.0)
48
+ parser.add_argument("--spt_linear_s_stage2", type=float, default=0.)
49
+ parser.add_argument("--ae_dtype", type=str, default="bf16", choices=['fp32', 'bf16'])
50
+ parser.add_argument("--diff_dtype", type=str, default="fp16", choices=['fp32', 'fp16', 'bf16'])
51
+ parser.add_argument("--no_llava", action='store_true', default=False)
52
+ parser.add_argument("--loading_half_params", action='store_true', default=False)
53
+ parser.add_argument("--use_tile_vae", action='store_true', default=False)
54
+ parser.add_argument("--encoder_tile_size", type=int, default=512)
55
+ parser.add_argument("--decoder_tile_size", type=int, default=64)
56
+ parser.add_argument("--load_8bit_llava", action='store_true', default=False)
57
+ args = parser.parse_args()
58
+ print(args)
59
+ use_llava = not args.no_llava
60
+
61
+ # load SUPIR
62
+ model = create_SUPIR_model('options/SUPIR_v0.yaml', SUPIR_sign=args.SUPIR_sign)
63
+ if args.loading_half_params:
64
+ model = model.half()
65
+ if args.use_tile_vae:
66
+ model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
67
+ model.ae_dtype = convert_dtype(args.ae_dtype)
68
+ model.model.dtype = convert_dtype(args.diff_dtype)
69
+ model = model.to(SUPIR_device)
70
+ # load LLaVA
71
+ if use_llava:
72
+ llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
73
+ else:
74
+ llava_agent = None
75
+
76
+ os.makedirs(args.save_dir, exist_ok=True)
77
+ for img_pth in os.listdir(args.img_dir):
78
+ img_name = os.path.splitext(img_pth)[0]
79
+
80
+ LQ_ips = Image.open(os.path.join(args.img_dir, img_pth))
81
+ LQ_img, h0, w0 = PIL2Tensor(LQ_ips, upsacle=args.upscale, min_size=args.min_size)
82
+ LQ_img = LQ_img.unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
83
+
84
+ # step 1: Pre-denoise for LLaVA, resize to 512
85
+ LQ_img_512, h1, w1 = PIL2Tensor(LQ_ips, upsacle=args.upscale, min_size=args.min_size, fix_resize=512)
86
+ LQ_img_512 = LQ_img_512.unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
87
+ clean_imgs = model.batchify_denoise(LQ_img_512)
88
+ clean_PIL_img = Tensor2PIL(clean_imgs[0], h1, w1)
89
+
90
+ # step 2: LLaVA
91
+ if use_llava:
92
+ captions = llava_agent.gen_image_caption([clean_PIL_img])
93
+ else:
94
+ captions = ['']
95
+ print(captions)
96
+
97
+ # # step 3: Diffusion Process
98
+ samples = model.batchify_sample(LQ_img, captions, num_steps=args.edm_steps, restoration_scale=args.s_stage1, s_churn=args.s_churn,
99
+ s_noise=args.s_noise, cfg_scale=args.s_cfg, control_scale=args.s_stage2, seed=args.seed,
100
+ num_samples=args.num_samples, p_p=args.a_prompt, n_p=args.n_prompt, color_fix_type=args.color_fix_type,
101
+ use_linear_CFG=args.linear_CFG, use_linear_control_scale=args.linear_s_stage2,
102
+ cfg_scale_start=args.spt_linear_CFG, control_scale_start=args.spt_linear_s_stage2)
103
+ # save
104
+ for _i, sample in enumerate(samples):
105
+ Tensor2PIL(sample, h0, w0).save(f'{args.save_dir}/{img_name}_{_i}.png')
106
+