Fabrice-TIERCELIN
commited on
Upload distributions.py
Browse files
sgm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(
|
34 |
+
device=self.parameters.device
|
35 |
+
)
|
36 |
+
|
37 |
+
def sample(self):
|
38 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
39 |
+
device=self.parameters.device
|
40 |
+
)
|
41 |
+
return x
|
42 |
+
|
43 |
+
def kl(self, other=None):
|
44 |
+
if self.deterministic:
|
45 |
+
return torch.Tensor([0.0])
|
46 |
+
else:
|
47 |
+
if other is None:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
50 |
+
dim=[1, 2, 3],
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
return 0.5 * torch.sum(
|
54 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
55 |
+
+ self.var / other.var
|
56 |
+
- 1.0
|
57 |
+
- self.logvar
|
58 |
+
+ other.logvar,
|
59 |
+
dim=[1, 2, 3],
|
60 |
+
)
|
61 |
+
|
62 |
+
def nll(self, sample, dims=[1, 2, 3]):
|
63 |
+
if self.deterministic:
|
64 |
+
return torch.Tensor([0.0])
|
65 |
+
logtwopi = np.log(2.0 * np.pi)
|
66 |
+
return 0.5 * torch.sum(
|
67 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
68 |
+
dim=dims,
|
69 |
+
)
|
70 |
+
|
71 |
+
def mode(self):
|
72 |
+
return self.mean
|
73 |
+
|
74 |
+
|
75 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
76 |
+
"""
|
77 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
78 |
+
Compute the KL divergence between two gaussians.
|
79 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
80 |
+
scalars, among other use cases.
|
81 |
+
"""
|
82 |
+
tensor = None
|
83 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
84 |
+
if isinstance(obj, torch.Tensor):
|
85 |
+
tensor = obj
|
86 |
+
break
|
87 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
88 |
+
|
89 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
90 |
+
# Tensors, but it does not work for torch.exp().
|
91 |
+
logvar1, logvar2 = [
|
92 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
93 |
+
for x in (logvar1, logvar2)
|
94 |
+
]
|
95 |
+
|
96 |
+
return 0.5 * (
|
97 |
+
-1.0
|
98 |
+
+ logvar2
|
99 |
+
- logvar1
|
100 |
+
+ torch.exp(logvar1 - logvar2)
|
101 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
102 |
+
)
|