Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
import argparse | |
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype | |
import numpy as np | |
import torch | |
from SUPIR.util import create_SUPIR_model, load_QF_ckpt | |
from PIL import Image | |
from llava.llava_agent import LLavaAgent | |
from CKPT_PTH import LLAVA_MODEL_PATH | |
import einops | |
import copy | |
import time | |
import spaces | |
from huggingface_hub import hf_hub_download | |
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter | |
from diffusers.utils import export_to_gif | |
from diffusers.utils import export_to_video | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import uuid | |
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k") | |
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR") | |
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR") | |
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR") | |
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning") | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml') | |
parser.add_argument("--ip", type=str, default='127.0.0.1') | |
parser.add_argument("--port", type=int, default='6688') | |
parser.add_argument("--no_llava", action='store_true', default=False) | |
parser.add_argument("--use_image_slider", action='store_true', default=False) | |
parser.add_argument("--log_history", action='store_true', default=False) | |
parser.add_argument("--loading_half_params", action='store_true', default=False) | |
parser.add_argument("--use_tile_vae", action='store_true', default=False) | |
parser.add_argument("--encoder_tile_size", type=int, default=512) | |
parser.add_argument("--decoder_tile_size", type=int, default=64) | |
parser.add_argument("--load_8bit_llava", action='store_true', default=False) | |
args = parser.parse_args() | |
server_ip = args.ip | |
server_port = args.port | |
use_llava = not args.no_llava | |
if torch.cuda.device_count() > 0: | |
if torch.cuda.device_count() >= 2: | |
SUPIR_device = 'cuda:0' | |
LLaVA_device = 'cuda:1' | |
elif torch.cuda.device_count() == 1: | |
SUPIR_device = 'cuda:0' | |
LLaVA_device = 'cuda:0' | |
else: | |
SUPIR_device = 'cpu' | |
LLaVA_device = 'cpu' | |
# load SUPIR | |
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True) | |
if args.loading_half_params: | |
model = model.half() | |
if args.use_tile_vae: | |
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size) | |
model = model.to(SUPIR_device) | |
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder) | |
model.current_model = 'v0-Q' | |
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt) | |
# load LLaVA | |
#if use_llava: | |
#llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False) | |
#else: | |
#llava_agent = None | |
# Available adapters (replace with your actual adapter names) | |
adapter_options = { | |
"zoom-out":"guoyww/animatediff-motion-lora-zoom-out", | |
"zoom-in":"guoyww/animatediff-motion-lora-zoom-in", | |
"pan-left":"guoyww/animatediff-motion-lora-pan-left", | |
"pan-right":"guoyww/animatediff-motion-lora-pan-right", | |
"roll-clockwise":"guoyww/animatediff-motion-lora-rolling-clockwise", | |
"roll-anticlockwise":"guoyww/animatediff-motion-lora-rolling-anticlockwise", | |
"tilt-up":"guoyww/animatediff-motion-lora-tilt-up", | |
"tilt-down":"guoyww/animatediff-motion-lora-tilt-down" | |
} | |
def load_cached_examples(): | |
examples = [ | |
["a cat playing with a ball of yarn", "blurry", 7.5, 12, ["zoom-in"]], | |
["a dog running in a field", "dark, indoors", 8.0, 8, ["pan-left", "tilt-up"]], | |
] | |
return examples | |
device = "cuda" | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16) | |
model_id = "SG161222/Realistic_Vision_V5.1_noVAE" | |
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to(device) | |
scheduler = DDIMScheduler.from_pretrained( | |
model_id, | |
subfolder="scheduler", | |
clip_sample=False, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
steps_offset=1, | |
) | |
pipe.scheduler = scheduler | |
def generate_video(prompt,negative_prompt, guidance_scale, num_inference_steps, adapter_choices): | |
pipe.to(device) | |
# Set adapters based on user selection | |
if adapter_choices: | |
for i in range(len(adapter_choices)): | |
adapter_name = adapter_choices[i] | |
pipe.load_lora_weights( | |
adapter_options[adapter_name], adapter_name=adapter_name, | |
) | |
pipe.set_adapters(adapter_choices, adapter_weights=[1.0] * len(adapter_choices)) | |
print(adapter_choices) | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_frames=16, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
iface = gr.Interface( | |
theme=gr.themes.Soft(primary_hue="cyan", secondary_hue="teal"), | |
fn=generate_video, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Textbox(label="Negative Prompt"), | |
gr.Slider(minimum=0.5, maximum=10, value=7.5, label="Guidance Scale"), | |
gr.Slider(minimum=4, maximum=24, step=4, value=4, label="Inference Steps"), | |
gr.CheckboxGroup(adapter_options.keys(), label="Adapter Choice",type='value'), | |
], | |
outputs=gr.Video(label="Generated Video"), | |
examples = [ | |
["Urban ambiance, man walking, neon lights, rain, wet floor, high quality", "bad quality", 7.5, 24, []], | |
["Nature, farms, mountains in background, drone shot, high quality","bad quality" ,8.0, 24, []], | |
], | |
cache_examples=True | |
) | |
iface.launch() |