Spaces:
Running
on
Zero
Running
on
Zero
# from einops._torch_specific import allow_ops_in_compiled_graph | |
# allow_ops_in_compiled_graph() | |
import einops | |
import torch | |
import torch as th | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from sgm.modules.diffusionmodules.util import ( | |
avg_pool_nd, | |
checkpoint, | |
conv_nd, | |
linear, | |
normalization, | |
timestep_embedding, | |
zero_module, | |
) | |
from sgm.modules.diffusionmodules.openaimodel import Downsample, Upsample, UNetModel, Timestep, \ | |
TimestepEmbedSequential, ResBlock, AttentionBlock, TimestepBlock | |
from sgm.modules.attention import SpatialTransformer, MemoryEfficientCrossAttention, CrossAttention | |
from sgm.util import default, log_txt_as_img, exists, instantiate_from_config | |
import re | |
import torch | |
from functools import partial | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
# dummy replace | |
def convert_module_to_f16(x): | |
pass | |
def convert_module_to_f32(x): | |
pass | |
class ZeroConv(nn.Module): | |
def __init__(self, label_nc, norm_nc, mask=False): | |
super().__init__() | |
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0)) | |
self.mask = mask | |
def forward(self, c, h, h_ori=None): | |
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32): | |
if not self.mask: | |
h = h + self.zero_conv(c) | |
else: | |
h = h + self.zero_conv(c) * torch.zeros_like(h) | |
if h_ori is not None: | |
h = th.cat([h_ori, h], dim=1) | |
return h | |
class ZeroSFT(nn.Module): | |
def __init__(self, label_nc, norm_nc, concat_channels=0, norm=True, mask=False): | |
super().__init__() | |
# param_free_norm_type = str(parsed.group(1)) | |
ks = 3 | |
pw = ks // 2 | |
self.norm = norm | |
if self.norm: | |
self.param_free_norm = normalization(norm_nc + concat_channels) | |
else: | |
self.param_free_norm = nn.Identity() | |
nhidden = 128 | |
self.mlp_shared = nn.Sequential( | |
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), | |
nn.SiLU() | |
) | |
self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)) | |
self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)) | |
# self.zero_mul = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw) | |
# self.zero_add = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw) | |
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0)) | |
self.pre_concat = bool(concat_channels != 0) | |
self.mask = mask | |
def forward(self, c, h, h_ori=None, control_scale=1): | |
assert self.mask is False | |
if h_ori is not None and self.pre_concat: | |
h_raw = th.cat([h_ori, h], dim=1) | |
else: | |
h_raw = h | |
if self.mask: | |
h = h + self.zero_conv(c) * torch.zeros_like(h) | |
else: | |
h = h + self.zero_conv(c) | |
if h_ori is not None and self.pre_concat: | |
h = th.cat([h_ori, h], dim=1) | |
actv = self.mlp_shared(c) | |
gamma = self.zero_mul(actv) | |
beta = self.zero_add(actv) | |
if self.mask: | |
gamma = gamma * torch.zeros_like(gamma) | |
beta = beta * torch.zeros_like(beta) | |
h = self.param_free_norm(h) * (gamma + 1) + beta | |
if h_ori is not None and not self.pre_concat: | |
h = th.cat([h_ori, h], dim=1) | |
return h * control_scale + h_raw * (1 - control_scale) | |
class ZeroCrossAttn(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, # vanilla attention | |
"softmax-xformers": MemoryEfficientCrossAttention | |
} | |
def __init__(self, context_dim, query_dim, zero_out=True, mask=False): | |
super().__init__() | |
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
assert attn_mode in self.ATTENTION_MODES | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
self.attn = attn_cls(query_dim=query_dim, context_dim=context_dim, heads=query_dim//64, dim_head=64) | |
self.norm1 = normalization(query_dim) | |
self.norm2 = normalization(context_dim) | |
self.mask = mask | |
# if zero_out: | |
# # for p in self.attn.to_out.parameters(): | |
# # p.detach().zero_() | |
# self.attn.to_out = zero_module(self.attn.to_out) | |
def forward(self, context, x, control_scale=1): | |
assert self.mask is False | |
x_in = x | |
x = self.norm1(x) | |
context = self.norm2(context) | |
b, c, h, w = x.shape | |
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() | |
context = rearrange(context, 'b c h w -> b (h w) c').contiguous() | |
x = self.attn(x, context) | |
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() | |
if self.mask: | |
x = x * torch.zeros_like(x) | |
x = x_in + x * control_scale | |
return x | |
class GLVControl(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
spatial_transformer_attn_type="softmax", | |
adm_in_channels=None, | |
use_fairscale_checkpoint=False, | |
offload_to_cpu=False, | |
transformer_depth_middle=None, | |
input_upscale=1, | |
): | |
super().__init__() | |
from omegaconf.listconfig import ListConfig | |
if use_spatial_transformer: | |
assert ( | |
context_dim is not None | |
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..." | |
if context_dim is not None: | |
assert ( | |
use_spatial_transformer | |
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..." | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert ( | |
num_head_channels != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
if num_head_channels == -1: | |
assert ( | |
num_heads != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
if isinstance(transformer_depth, int): | |
transformer_depth = len(channel_mult) * [transformer_depth] | |
elif isinstance(transformer_depth, ListConfig): | |
transformer_depth = list(transformer_depth) | |
transformer_depth_middle = default( | |
transformer_depth_middle, transformer_depth[-1] | |
) | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError( | |
"provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult" | |
) | |
self.num_res_blocks = num_res_blocks | |
# self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all( | |
map( | |
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], | |
range(len(num_attention_blocks)), | |
) | |
) | |
print( | |
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set." | |
) # todo: convert to warning | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
if use_fp16: | |
print("WARNING: use_fp16 was dropped and has no effect anymore.") | |
# self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
assert use_fairscale_checkpoint != use_checkpoint or not ( | |
use_checkpoint or use_fairscale_checkpoint | |
) | |
self.use_fairscale_checkpoint = False | |
checkpoint_wrapper_fn = ( | |
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu) | |
if self.use_fairscale_checkpoint | |
else lambda x: x | |
) | |
time_embed_dim = model_channels * 4 | |
self.time_embed = checkpoint_wrapper_fn( | |
nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
print("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "timestep": | |
self.label_emb = checkpoint_wrapper_fn( | |
nn.Sequential( | |
Timestep(model_channels), | |
nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
), | |
) | |
) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
linear(adm_in_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
else: | |
raise ValueError() | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
checkpoint_wrapper_fn( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ( | |
ch // num_heads | |
if use_spatial_transformer | |
else num_head_channels | |
) | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if ( | |
not exists(num_attention_blocks) | |
or nr < num_attention_blocks[level] | |
): | |
layers.append( | |
checkpoint_wrapper_fn( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
) | |
if not use_spatial_transformer | |
else checkpoint_wrapper_fn( | |
SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth[level], | |
context_dim=context_dim, | |
disable_self_attn=disabled_sa, | |
use_linear=use_linear_in_transformer, | |
attn_type=spatial_transformer_attn_type, | |
use_checkpoint=use_checkpoint, | |
) | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
checkpoint_wrapper_fn( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
checkpoint_wrapper_fn( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
), | |
checkpoint_wrapper_fn( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
) | |
if not use_spatial_transformer | |
else checkpoint_wrapper_fn( | |
SpatialTransformer( # always uses a self-attn | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth_middle, | |
context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, | |
use_linear=use_linear_in_transformer, | |
attn_type=spatial_transformer_attn_type, | |
use_checkpoint=use_checkpoint, | |
) | |
), | |
checkpoint_wrapper_fn( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
), | |
) | |
self.input_upscale = input_upscale | |
self.input_hint_block = TimestepEmbedSequential( | |
zero_module(conv_nd(dims, in_channels, model_channels, 3, padding=1)) | |
) | |
def convert_to_fp16(self): | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.input_blocks.apply(convert_module_to_f16) | |
self.middle_block.apply(convert_module_to_f16) | |
def convert_to_fp32(self): | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.input_blocks.apply(convert_module_to_f32) | |
self.middle_block.apply(convert_module_to_f32) | |
def forward(self, x, timesteps, xt, context=None, y=None, **kwargs): | |
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32): | |
# x = x.to(torch.float32) | |
# timesteps = timesteps.to(torch.float32) | |
# xt = xt.to(torch.float32) | |
# context = context.to(torch.float32) | |
# y = y.to(torch.float32) | |
# print(x.dtype) | |
xt, context, y = xt.to(x.dtype), context.to(x.dtype), y.to(x.dtype) | |
if self.input_upscale != 1: | |
x = nn.functional.interpolate(x, scale_factor=self.input_upscale, mode='bilinear', antialias=True) | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
# import pdb | |
# pdb.set_trace() | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == xt.shape[0] | |
emb = emb + self.label_emb(y) | |
guided_hint = self.input_hint_block(x, emb, context) | |
# h = x.type(self.dtype) | |
h = xt | |
for module in self.input_blocks: | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
hs.append(h) | |
# print(module) | |
# print(h.shape) | |
h = self.middle_block(h, emb, context) | |
hs.append(h) | |
return hs | |
class LightGLVUNet(UNetModel): | |
def __init__(self, mode='', project_type='ZeroSFT', project_channel_scale=1, | |
*args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if mode == 'XL-base': | |
cond_output_channels = [320] * 4 + [640] * 3 + [1280] * 3 | |
project_channels = [160] * 4 + [320] * 3 + [640] * 3 | |
concat_channels = [320] * 2 + [640] * 3 + [1280] * 4 + [0] | |
cross_attn_insert_idx = [6, 3] | |
self.progressive_mask_nums = [0, 3, 7, 11] | |
elif mode == 'XL-refine': | |
cond_output_channels = [384] * 4 + [768] * 3 + [1536] * 6 | |
project_channels = [192] * 4 + [384] * 3 + [768] * 6 | |
concat_channels = [384] * 2 + [768] * 3 + [1536] * 7 + [0] | |
cross_attn_insert_idx = [9, 6, 3] | |
self.progressive_mask_nums = [0, 3, 6, 10, 14] | |
else: | |
raise NotImplementedError | |
project_channels = [int(c * project_channel_scale) for c in project_channels] | |
self.project_modules = nn.ModuleList() | |
for i in range(len(cond_output_channels)): | |
# if i == len(cond_output_channels) - 1: | |
# _project_type = 'ZeroCrossAttn' | |
# else: | |
# _project_type = project_type | |
_project_type = project_type | |
if _project_type == 'ZeroSFT': | |
self.project_modules.append(ZeroSFT(project_channels[i], cond_output_channels[i], | |
concat_channels=concat_channels[i])) | |
elif _project_type == 'ZeroCrossAttn': | |
self.project_modules.append(ZeroCrossAttn(cond_output_channels[i], project_channels[i])) | |
else: | |
raise NotImplementedError | |
for i in cross_attn_insert_idx: | |
self.project_modules.insert(i, ZeroCrossAttn(cond_output_channels[i], concat_channels[i])) | |
# print(self.project_modules[i]) | |
def step_progressive_mask(self): | |
if len(self.progressive_mask_nums) > 0: | |
mask_num = self.progressive_mask_nums.pop() | |
for i in range(len(self.project_modules)): | |
if i < mask_num: | |
self.project_modules[i].mask = True | |
else: | |
self.project_modules[i].mask = False | |
return | |
# print(f'step_progressive_mask, current masked layers: {mask_num}') | |
else: | |
return | |
# print('step_progressive_mask, no more masked layers') | |
# for i in range(len(self.project_modules)): | |
# print(self.project_modules[i].mask) | |
def forward(self, x, timesteps=None, context=None, y=None, control=None, control_scale=1, **kwargs): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param context: conditioning plugged in via crossattn | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
hs = [] | |
_dtype = control[0].dtype | |
x, context, y = x.to(_dtype), context.to(_dtype), y.to(_dtype) | |
with torch.no_grad(): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
# h = x.type(self.dtype) | |
h = x | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
adapter_idx = len(self.project_modules) - 1 | |
control_idx = len(control) - 1 | |
h = self.middle_block(h, emb, context) | |
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale) | |
adapter_idx -= 1 | |
control_idx -= 1 | |
for i, module in enumerate(self.output_blocks): | |
_h = hs.pop() | |
h = self.project_modules[adapter_idx](control[control_idx], _h, h, control_scale=control_scale) | |
adapter_idx -= 1 | |
# h = th.cat([h, _h], dim=1) | |
if len(module) == 3: | |
assert isinstance(module[2], Upsample) | |
for layer in module[:2]: | |
if isinstance(layer, TimestepBlock): | |
h = layer(h, emb) | |
elif isinstance(layer, SpatialTransformer): | |
h = layer(h, context) | |
else: | |
h = layer(h) | |
# print('cross_attn_here') | |
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale) | |
adapter_idx -= 1 | |
h = module[2](h) | |
else: | |
h = module(h, emb, context) | |
control_idx -= 1 | |
# print(module) | |
# print(h.shape) | |
h = h.type(x.dtype) | |
if self.predict_codebook_ids: | |
assert False, "not supported anymore. what the f*** are you doing?" | |
else: | |
return self.out(h) | |
if __name__ == '__main__': | |
from omegaconf import OmegaConf | |
# refiner | |
# opt = OmegaConf.load('../../options/train/debug_p2_xl.yaml') | |
# | |
# model = instantiate_from_config(opt.model.params.control_stage_config) | |
# hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64])) | |
# hint = [h.cuda() for h in hint] | |
# print(sum(map(lambda hint: hint.numel(), model.parameters()))) | |
# | |
# unet = instantiate_from_config(opt.model.params.network_config) | |
# unet = unet.cuda() | |
# | |
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(), | |
# torch.randn([1, 2560]).cuda(), hint) | |
# print(sum(map(lambda _output: _output.numel(), unet.parameters()))) | |
# base | |
with torch.no_grad(): | |
opt = OmegaConf.load('../../options/dev/SUPIR_tmp.yaml') | |
model = instantiate_from_config(opt.model.params.control_stage_config) | |
model = model.cuda() | |
hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 2048]).cuda(), | |
torch.randn([1, 2816]).cuda()) | |
for h in hint: | |
print(h.shape) | |
# | |
unet = instantiate_from_config(opt.model.params.network_config) | |
unet = unet.cuda() | |
_output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 2048]).cuda(), | |
torch.randn([1, 2816]).cuda(), hint) | |
# model = instantiate_from_config(opt.model.params.control_stage_config) | |
# model = model.cuda() | |
# # hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64])) | |
# hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 1280]).cuda(), | |
# torch.randn([1, 2560]).cuda()) | |
# # hint = [h.cuda() for h in hint] | |
# | |
# for h in hint: | |
# print(h.shape) | |
# | |
# unet = instantiate_from_config(opt.model.params.network_config) | |
# unet = unet.cuda() | |
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(), | |
# torch.randn([1, 2560]).cuda(), hint) | |