Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer | |
from sklearn.preprocessing import LabelEncoder | |
from utils.BiLSTM import BiLSTMAttentionBERT | |
import numpy as np | |
import streamlit as st | |
import requests | |
def load_model_for_prediction(): | |
try: | |
st.write("Starting model loading...") | |
# Test Hugging Face connectivity | |
st.write("Testing connection to Hugging Face...") | |
response = requests.get("https://huggingface.co/joko333/BiLSTM_v01") | |
if response.status_code != 200: | |
st.error(f"Cannot connect to Hugging Face. Status code: {response.status_code}") | |
return None, None, None | |
# Load model with logging | |
st.write("Loading BiLSTM model...") | |
model = BiLSTMAttentionBERT.from_pretrained( | |
"joko333/BiLSTM_v01", | |
hidden_dim=128, | |
num_classes=22, | |
num_layers=2, | |
dropout=0.5 | |
) | |
st.write("Model loaded successfully") | |
# Initialize label encoder | |
st.write("Initializing label encoder...") | |
label_encoder = LabelEncoder() | |
label_encoder.classes_ = np.array(['Addition', 'Causal', 'Cause and Effect', | |
'Clarification', 'Comparison', 'Concession', | |
'Conditional', 'Contrast', 'Contrastive Emphasis', | |
'Definition', 'Elaboration', 'Emphasis', | |
'Enumeration', 'Explanation', 'Generalization', | |
'Illustration', 'Inference', 'Problem Solution', | |
'Purpose', 'Sequential', 'Summary', | |
'Temporal Sequence']) | |
st.write("Label encoder initialized") | |
# Load tokenizer | |
st.write("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-base-cased-v1.2') | |
st.write("Tokenizer loaded successfully") | |
return model, label_encoder, tokenizer | |
except Exception as e: | |
st.error(f"Detailed error: {str(e)}") | |
st.error(f"Error type: {type(e).__name__}") | |
import traceback | |
st.error(f"Traceback: {traceback.format_exc()}") | |
return None, None, None | |
def predict_sentence(model, sentence, tokenizer, label_encoder): | |
""" | |
Make prediction for a single sentence with label validation. | |
""" | |
# Validation checks | |
if model is None: | |
print("Error: Model not loaded") | |
return "Error: Model not loaded", 0.0 | |
if tokenizer is None: | |
print("Error: Tokenizer not loaded") | |
return "Error: Tokenizer not loaded", 0.0 | |
if label_encoder is None: | |
print("Error: Label encoder not loaded") | |
return "Error: Label encoder not loaded", 0.0 | |
# Force CPU device | |
device = torch.device('cpu') | |
model = model.to(device) | |
model.eval() | |
# Tokenize | |
try: | |
encoding = tokenizer( | |
sentence, | |
add_special_tokens=True, | |
max_length=512, | |
padding='max_length', | |
truncation=True, | |
return_tensors='pt' | |
).to(device) | |
with torch.no_grad(): | |
outputs = model(encoding['input_ids'], encoding['attention_mask']) | |
probabilities = torch.softmax(outputs, dim=1) | |
prob, pred_idx = torch.max(probabilities, dim=1) | |
predicted_label = label_encoder.classes_[pred_idx.item()] | |
return predicted_label, prob.item() | |
except Exception as e: | |
print(f"Prediction error: {str(e)}") | |
return f"Error: {str(e)}", 0.0 | |
def print_labels(label_encoder, show_counts=False): | |
"""Print all labels and their corresponding indices""" | |
print("\nAvailable labels:") | |
print("-" * 40) | |
for idx, label in enumerate(label_encoder.classes_): | |
print(f"Index {idx}: {label}") | |
print("-" * 40) | |
print(f"Total number of classes: {len(label_encoder.classes_)}\n") | |