Spaces:
Build error
Build error
import abc | |
import pandas as pd | |
import pickle | |
class SimilarityAlg(metaclass=abc.ABCMeta): | |
"""Similarity Algorithm to compute similarity between query_embedding and embeddings""" | |
def __init__(self) -> None: | |
pass | |
def __call__(self, query_embedding, embeddings) -> None: | |
pass | |
class Embedding_Model(metaclass=abc.ABCMeta): | |
"""Embedding Model to compute embedding of a text""" | |
def __init__(self, model_name) -> None: | |
"""Initialize the embedding model""" | |
embedding_cache_path = f"/app/ckpt/embedding_cache_{model_name}.pkl" | |
self.embedding_cache_path = embedding_cache_path | |
# load the cache if it exists, and save a copy to disk | |
try: | |
embedding_cache = pd.read_pickle(embedding_cache_path) | |
except FileNotFoundError: | |
embedding_cache = {} | |
with open(embedding_cache_path, "wb") as embedding_cache_file: | |
pickle.dump(embedding_cache, embedding_cache_file) | |
self.embedding_cache = embedding_cache | |
self.model_name = model_name | |
def __call__(self, text) -> None: | |
"""Compute the embedding of the text""" | |
pass | |
class AbstractPDFParser(metaclass=abc.ABCMeta): | |
""" PDF parser to parse a PDF file""" | |
def __init__(self, db_name) -> None: | |
"""Initialize the pdf database""" | |
db_cache_path = f"/app/ckpt/pdf_parser_{db_name}.pkl" | |
self.db_cache_path = db_cache_path | |
# load the cache if it exists, and save a copy to disk | |
try: | |
db_cache = pd.read_pickle(db_cache_path) | |
except FileNotFoundError: | |
db_cache = {} | |
with open(db_cache_path, "wb") as cache_file: | |
pickle.dump(db_cache, cache_file) | |
self.db_cache = db_cache | |
self.db_name = db_name | |
def parse_pdf(self,) -> None: | |
"""Parse the PDF file""" | |
pass | |
def _get_metadata(self, ) -> None: | |
"""Get the metadata of the PDF file""" | |
pass | |
def get_paragraphs(self, ) -> None: | |
"""Get the paragraphs of the PDF file""" | |
pass | |
def get_split_paragraphs(self, ) -> None: | |
""" | |
Get the split paragraphs of the PDF file | |
Return: | |
split_paragraphs: dict of metadata and corresponding list of split paragraphs | |
""" | |
pass | |
def _determine_metadata_of_paragraph(self, paragraph) -> None: | |
""" | |
Determine the metadata of a paragraph | |
Return: | |
metadata: metadata of the paragraph | |
""" | |
pass | |
# @abc.abstractmethod | |
# def _determine_optimal_split_of_pargraphs(self, ) -> None: | |
# """ | |
# Determine the optimal split of paragraphs | |
# Return: | |
# split_paragraphs: dict of metadata and corresponding list of split paragraphs | |
# """ | |
# pass | |
class ChatbotEngine(metaclass=abc.ABCMeta): | |
def __init__(self,) -> None: | |
pass | |
def query(self, user_query): | |
pass | |