Spaces:
Configuration error
Configuration error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
from torchvision.models import resnet18, resnet50, resnet101, resnet152, vgg16, vgg19, inception_v3 | |
import torch | |
import torch.nn as nn | |
import random | |
import numpy as np | |
class EncoderCNN(nn.Module): | |
def __init__(self, embed_size, dropout=0.5, image_model='resnet101', pretrained=True): | |
"""Load the pretrained ResNet-152 and replace top fc layer.""" | |
super(EncoderCNN, self).__init__() | |
resnet = globals()[image_model](pretrained=pretrained) | |
modules = list(resnet.children())[:-2] # delete the last fc layer. | |
self.resnet = nn.Sequential(*modules) | |
self.linear = nn.Sequential(nn.Conv2d(resnet.fc.in_features, embed_size, kernel_size=1, padding=0), | |
nn.Dropout2d(dropout)) | |
def forward(self, images, keep_cnn_gradients=False): | |
"""Extract feature vectors from input images.""" | |
if keep_cnn_gradients: | |
raw_conv_feats = self.resnet(images) | |
else: | |
with torch.no_grad(): | |
raw_conv_feats = self.resnet(images) | |
features = self.linear(raw_conv_feats) | |
features = features.view(features.size(0), features.size(1), -1) | |
return features | |
class EncoderLabels(nn.Module): | |
def __init__(self, embed_size, num_classes, dropout=0.5, embed_weights=None, scale_grad=False): | |
super(EncoderLabels, self).__init__() | |
embeddinglayer = nn.Embedding(num_classes, embed_size, padding_idx=num_classes-1, scale_grad_by_freq=scale_grad) | |
if embed_weights is not None: | |
embeddinglayer.weight.data.copy_(embed_weights) | |
self.pad_value = num_classes - 1 | |
self.linear = embeddinglayer | |
self.dropout = dropout | |
self.embed_size = embed_size | |
def forward(self, x, onehot_flag=False): | |
if onehot_flag: | |
embeddings = torch.matmul(x, self.linear.weight) | |
else: | |
embeddings = self.linear(x) | |
embeddings = nn.functional.dropout(embeddings, p=self.dropout, training=self.training) | |
embeddings = embeddings.permute(0, 2, 1).contiguous() | |
return embeddings | |