beanbox-apis / torchmoji /finetuning.py
johnpaulbin's picture
First model version
3affa92
raw
history blame
25.9 kB
# -*- coding: utf-8 -*-
""" Finetuning functions for doing transfer learning to new datasets.
"""
from __future__ import print_function
import uuid
from time import sleep
from io import open
import math
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import BatchSampler, SequentialSampler
from torch.nn.utils import clip_grad_norm
from sklearn.metrics import f1_score
from torchmoji.global_variables import (FINETUNING_METHODS,
FINETUNING_METRICS,
WEIGHTS_DIR)
from torchmoji.tokenizer import tokenize
from torchmoji.sentence_tokenizer import SentenceTokenizer
try:
unicode
IS_PYTHON2 = True
except NameError:
unicode = str
IS_PYTHON2 = False
def load_benchmark(path, vocab, extend_with=0):
""" Loads the given benchmark dataset.
Tokenizes the texts using the provided vocabulary, extending it with
words from the training dataset if extend_with > 0. Splits them into
three lists: training, validation and testing (in that order).
Also calculates the maximum length of the texts and the
suggested batch_size.
# Arguments:
path: Path to the dataset to be loaded.
vocab: Vocabulary to be used for tokenizing texts.
extend_with: If > 0, the vocabulary will be extended with up to
extend_with tokens from the training set before tokenizing.
# Returns:
A dictionary with the following fields:
texts: List of three lists, containing tokenized inputs for
training, validation and testing (in that order).
labels: List of three lists, containing labels for training,
validation and testing (in that order).
added: Number of tokens added to the vocabulary.
batch_size: Batch size.
maxlen: Maximum length of an input.
"""
# Pre-processing dataset
with open(path, 'rb') as dataset:
if IS_PYTHON2:
data = pickle.load(dataset)
else:
data = pickle.load(dataset, fix_imports=True)
# Decode data
try:
texts = [unicode(x) for x in data['texts']]
except UnicodeDecodeError:
texts = [x.decode('utf-8') for x in data['texts']]
# Extract labels
labels = [x['label'] for x in data['info']]
batch_size, maxlen = calculate_batchsize_maxlen(texts)
st = SentenceTokenizer(vocab, maxlen)
# Split up dataset. Extend the existing vocabulary with up to extend_with
# tokens from the training dataset.
texts, labels, added = st.split_train_val_test(texts,
labels,
[data['train_ind'],
data['val_ind'],
data['test_ind']],
extend_with=extend_with)
return {'texts': texts,
'labels': labels,
'added': added,
'batch_size': batch_size,
'maxlen': maxlen}
def calculate_batchsize_maxlen(texts):
""" Calculates the maximum length in the provided texts and a suitable
batch size. Rounds up maxlen to the nearest multiple of ten.
# Arguments:
texts: List of inputs.
# Returns:
Batch size,
max length
"""
def roundup(x):
return int(math.ceil(x / 10.0)) * 10
# Calculate max length of sequences considered
# Adjust batch_size accordingly to prevent GPU overflow
lengths = [len(tokenize(t)) for t in texts]
maxlen = roundup(np.percentile(lengths, 80.0))
batch_size = 250 if maxlen <= 100 else 50
return batch_size, maxlen
def freeze_layers(model, unfrozen_types=[], unfrozen_keyword=None):
""" Freezes all layers in the given model, except for ones that are
explicitly specified to not be frozen.
# Arguments:
model: Model whose layers should be modified.
unfrozen_types: List of layer types which shouldn't be frozen.
unfrozen_keyword: Name keywords of layers that shouldn't be frozen.
# Returns:
Model with the selected layers frozen.
"""
# Get trainable modules
trainable_modules = [(n, m) for n, m in model.named_children() if len([id(p) for p in m.parameters()]) != 0]
for name, module in trainable_modules:
trainable = (any(typ in str(module) for typ in unfrozen_types) or
(unfrozen_keyword is not None and unfrozen_keyword.lower() in name.lower()))
change_trainable(module, trainable, verbose=False)
return model
def change_trainable(module, trainable, verbose=False):
""" Helper method that freezes or unfreezes a given layer.
# Arguments:
module: Module to be modified.
trainable: Whether the layer should be frozen or unfrozen.
verbose: Verbosity flag.
"""
if verbose: print('Changing MODULE', module, 'to trainable =', trainable)
for name, param in module.named_parameters():
if verbose: print('Setting weight', name, 'to trainable =', trainable)
param.requires_grad = trainable
if verbose:
action = 'Unfroze' if trainable else 'Froze'
if verbose: print("{} {}".format(action, module))
def find_f1_threshold(model, val_gen, test_gen, average='binary'):
""" Choose a threshold for F1 based on the validation dataset
(see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442797/
for details on why to find another threshold than simply 0.5)
# Arguments:
model: pyTorch model
val_gen: Validation set dataloader.
test_gen: Testing set dataloader.
# Returns:
F1 score for the given data and
the corresponding F1 threshold
"""
thresholds = np.arange(0.01, 0.5, step=0.01)
f1_scores = []
model.eval()
val_out = [(y, model(X)) for X, y in val_gen]
y_val, y_pred_val = (list(t) for t in zip(*val_out))
test_out = [(y, model(X)) for X, y in test_gen]
y_test, y_pred_test = (list(t) for t in zip(*val_out))
for t in thresholds:
y_pred_val_ind = (y_pred_val > t)
f1_val = f1_score(y_val, y_pred_val_ind, average=average)
f1_scores.append(f1_val)
best_t = thresholds[np.argmax(f1_scores)]
y_pred_ind = (y_pred_test > best_t)
f1_test = f1_score(y_test, y_pred_ind, average=average)
return f1_test, best_t
def finetune(model, texts, labels, nb_classes, batch_size, method,
metric='acc', epoch_size=5000, nb_epochs=1000, embed_l2=1E-6,
verbose=1):
""" Compiles and finetunes the given pytorch model.
# Arguments:
model: Model to be finetuned
texts: List of three lists, containing tokenized inputs for training,
validation and testing (in that order).
labels: List of three lists, containing labels for training,
validation and testing (in that order).
nb_classes: Number of classes in the dataset.
batch_size: Batch size.
method: Finetuning method to be used. For available methods, see
FINETUNING_METHODS in global_variables.py.
metric: Evaluation metric to be used. For available metrics, see
FINETUNING_METRICS in global_variables.py.
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs. Doesn't matter much as early stopping is used.
embed_l2: L2 regularization for the embedding layer.
verbose: Verbosity flag.
# Returns:
Model after finetuning,
score after finetuning using the provided metric.
"""
if method not in FINETUNING_METHODS:
raise ValueError('ERROR (finetune): Invalid method parameter. '
'Available options: {}'.format(FINETUNING_METHODS))
if metric not in FINETUNING_METRICS:
raise ValueError('ERROR (finetune): Invalid metric parameter. '
'Available options: {}'.format(FINETUNING_METRICS))
train_gen = get_data_loader(texts[0], labels[0], batch_size,
extended_batch_sampler=True, epoch_size=epoch_size)
val_gen = get_data_loader(texts[1], labels[1], batch_size,
extended_batch_sampler=False)
test_gen = get_data_loader(texts[2], labels[2], batch_size,
extended_batch_sampler=False)
checkpoint_path = '{}/torchmoji-checkpoint-{}.bin' \
.format(WEIGHTS_DIR, str(uuid.uuid4()))
if method in ['last', 'new']:
lr = 0.001
elif method in ['full', 'chain-thaw']:
lr = 0.0001
loss_op = nn.BCEWithLogitsLoss() if nb_classes <= 2 \
else nn.CrossEntropyLoss()
# Freeze layers if using last
if method == 'last':
model = freeze_layers(model, unfrozen_keyword='output_layer')
# Define optimizer, for chain-thaw we define it later (after freezing)
if method == 'last':
adam = optim.Adam((p for p in model.parameters() if p.requires_grad), lr=lr)
elif method in ['full', 'new']:
# Add L2 regulation on embeddings only
embed_params_id = [id(p) for p in model.embed.parameters()]
output_layer_params_id = [id(p) for p in model.output_layer.parameters()]
base_params = [p for p in model.parameters()
if id(p) not in embed_params_id and id(p) not in output_layer_params_id and p.requires_grad]
embed_params = [p for p in model.parameters() if id(p) in embed_params_id and p.requires_grad]
output_layer_params = [p for p in model.parameters() if id(p) in output_layer_params_id and p.requires_grad]
adam = optim.Adam([
{'params': base_params},
{'params': embed_params, 'weight_decay': embed_l2},
{'params': output_layer_params, 'lr': 0.001},
], lr=lr)
# Training
if verbose:
print('Method: {}'.format(method))
print('Metric: {}'.format(metric))
print('Classes: {}'.format(nb_classes))
if method == 'chain-thaw':
result = chain_thaw(model, train_gen, val_gen, test_gen, nb_epochs, checkpoint_path, loss_op, embed_l2=embed_l2,
evaluate=metric, verbose=verbose)
else:
result = tune_trainable(model, loss_op, adam, train_gen, val_gen, test_gen, nb_epochs, checkpoint_path,
evaluate=metric, verbose=verbose)
return model, result
def tune_trainable(model, loss_op, optim_op, train_gen, val_gen, test_gen,
nb_epochs, checkpoint_path, patience=5, evaluate='acc',
verbose=2):
""" Finetunes the given model using the accuracy measure.
# Arguments:
model: Model to be finetuned.
nb_classes: Number of classes in the given dataset.
train: Training data, given as a tuple of (inputs, outputs)
val: Validation data, given as a tuple of (inputs, outputs)
test: Testing data, given as a tuple of (inputs, outputs)
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
batch_size: Batch size.
checkpoint_weight_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
patience: Patience for callback methods.
evaluate: Evaluation method to use. Can be 'acc' or 'weighted_f1'.
verbose: Verbosity flag.
# Returns:
Accuracy of the trained model, ONLY if 'evaluate' is set.
"""
if verbose:
print("Trainable weights: {}".format([n for n, p in model.named_parameters() if p.requires_grad]))
print("Training...")
if evaluate == 'acc':
print("Evaluation on test set prior training:", evaluate_using_acc(model, test_gen))
elif evaluate == 'weighted_f1':
print("Evaluation on test set prior training:", evaluate_using_weighted_f1(model, test_gen, val_gen))
fit_model(model, loss_op, optim_op, train_gen, val_gen, nb_epochs, checkpoint_path, patience)
# Reload the best weights found to avoid overfitting
# Wait a bit to allow proper closing of weights file
sleep(1)
model.load_state_dict(torch.load(checkpoint_path))
if verbose >= 2:
print("Loaded weights from {}".format(checkpoint_path))
if evaluate == 'acc':
return evaluate_using_acc(model, test_gen)
elif evaluate == 'weighted_f1':
return evaluate_using_weighted_f1(model, test_gen, val_gen)
def evaluate_using_weighted_f1(model, test_gen, val_gen):
""" Evaluation function using macro weighted F1 score.
# Arguments:
model: Model to be evaluated.
X_test: Inputs of the testing set.
y_test: Outputs of the testing set.
X_val: Inputs of the validation set.
y_val: Outputs of the validation set.
batch_size: Batch size.
# Returns:
Weighted F1 score of the given model.
"""
# Evaluate on test and val data
f1_test, _ = find_f1_threshold(model, test_gen, val_gen, average='weighted_f1')
return f1_test
def evaluate_using_acc(model, test_gen):
""" Evaluation function using accuracy.
# Arguments:
model: Model to be evaluated.
test_gen: Testing data iterator (DataLoader)
# Returns:
Accuracy of the given model.
"""
# Validate on test_data
model.eval()
accs = []
for i, data in enumerate(test_gen):
x, y = data
outs = model(x)
if model.nb_classes > 2:
pred = torch.max(outs, 1)[1]
acc = accuracy_score(y.squeeze().numpy(), pred.squeeze().numpy())
else:
pred = (outs >= 0).long()
acc = (pred == y).double().sum() / len(pred)
accs.append(acc)
return np.mean(accs)
def chain_thaw(model, train_gen, val_gen, test_gen, nb_epochs, checkpoint_path, loss_op,
patience=5, initial_lr=0.001, next_lr=0.0001, embed_l2=1E-6, evaluate='acc', verbose=1):
""" Finetunes given model using chain-thaw and evaluates using accuracy.
# Arguments:
model: Model to be finetuned.
train: Training data, given as a tuple of (inputs, outputs)
val: Validation data, given as a tuple of (inputs, outputs)
test: Testing data, given as a tuple of (inputs, outputs)
batch_size: Batch size.
loss: Loss function to be used during training.
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
checkpoint_weight_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
initial_lr: Initial learning rate. Will only be used for the first
training step (i.e. the output_layer layer)
next_lr: Learning rate for every subsequent step.
seed: Random number generator seed.
verbose: Verbosity flag.
evaluate: Evaluation method to use. Can be 'acc' or 'weighted_f1'.
# Returns:
Accuracy of the finetuned model.
"""
if verbose:
print('Training..')
# Train using chain-thaw
train_by_chain_thaw(model, train_gen, val_gen, loss_op, patience, nb_epochs, checkpoint_path,
initial_lr, next_lr, embed_l2, verbose)
if evaluate == 'acc':
return evaluate_using_acc(model, test_gen)
elif evaluate == 'weighted_f1':
return evaluate_using_weighted_f1(model, test_gen, val_gen)
def train_by_chain_thaw(model, train_gen, val_gen, loss_op, patience, nb_epochs, checkpoint_path,
initial_lr=0.001, next_lr=0.0001, embed_l2=1E-6, verbose=1):
""" Finetunes model using the chain-thaw method.
This is done as follows:
1) Freeze every layer except the last (output_layer) layer and train it.
2) Freeze every layer except the first layer and train it.
3) Freeze every layer except the second etc., until the second last layer.
4) Unfreeze all layers and train entire model.
# Arguments:
model: Model to be trained.
train_gen: Training sample generator.
val_data: Validation data.
loss: Loss function to be used.
finetuning_args: Training early stopping and checkpoint saving parameters
epoch_size: Number of samples in an epoch.
nb_epochs: Number of epochs.
checkpoint_weight_path: Where weight checkpoints should be saved.
batch_size: Batch size.
initial_lr: Initial learning rate. Will only be used for the first
training step (i.e. the output_layer layer)
next_lr: Learning rate for every subsequent step.
verbose: Verbosity flag.
"""
# Get trainable layers
layers = [m for m in model.children() if len([id(p) for p in m.parameters()]) != 0]
# Bring last layer to front
layers.insert(0, layers.pop(len(layers) - 1))
# Add None to the end to signify finetuning all layers
layers.append(None)
lr = None
# Finetune each layer one by one and finetune all of them at once
# at the end
for layer in layers:
if lr is None:
lr = initial_lr
elif lr == initial_lr:
lr = next_lr
# Freeze all except current layer
for _layer in layers:
if _layer is not None:
trainable = _layer == layer or layer is None
change_trainable(_layer, trainable=trainable, verbose=False)
# Verify we froze the right layers
for _layer in model.children():
assert all(p.requires_grad == (_layer == layer) for p in _layer.parameters()) or layer is None
if verbose:
if layer is None:
print('Finetuning all layers')
else:
print('Finetuning {}'.format(layer))
special_params = [id(p) for p in model.embed.parameters()]
base_params = [p for p in model.parameters() if id(p) not in special_params and p.requires_grad]
embed_parameters = [p for p in model.parameters() if id(p) in special_params and p.requires_grad]
adam = optim.Adam([
{'params': base_params},
{'params': embed_parameters, 'weight_decay': embed_l2},
], lr=lr)
fit_model(model, loss_op, adam, train_gen, val_gen, nb_epochs,
checkpoint_path, patience)
# Reload the best weights found to avoid overfitting
# Wait a bit to allow proper closing of weights file
sleep(1)
model.load_state_dict(torch.load(checkpoint_path))
if verbose >= 2:
print("Loaded weights from {}".format(checkpoint_path))
def calc_loss(loss_op, pred, yv):
if type(loss_op) is nn.CrossEntropyLoss:
return loss_op(pred.squeeze(), yv.squeeze())
else:
return loss_op(pred.squeeze(), yv.squeeze().float())
def fit_model(model, loss_op, optim_op, train_gen, val_gen, epochs,
checkpoint_path, patience):
""" Analog to Keras fit_generator function.
# Arguments:
model: Model to be finetuned.
loss_op: loss operation (BCEWithLogitsLoss or CrossEntropy for e.g.)
optim_op: optimization operation (Adam e.g.)
train_gen: Training data iterator (DataLoader)
val_gen: Validation data iterator (DataLoader)
epochs: Number of epochs.
checkpoint_path: Filepath where weights will be checkpointed to
during training. This file will be rewritten by the function.
patience: Patience for callback methods.
verbose: Verbosity flag.
# Returns:
Accuracy of the trained model, ONLY if 'evaluate' is set.
"""
# Save original checkpoint
torch.save(model.state_dict(), checkpoint_path)
model.eval()
best_loss = np.mean([calc_loss(loss_op, model(Variable(xv)), Variable(yv)).data.cpu().numpy()[0] for xv, yv in val_gen])
print("original val loss", best_loss)
epoch_without_impr = 0
for epoch in range(epochs):
for i, data in enumerate(train_gen):
X_train, y_train = data
X_train = Variable(X_train, requires_grad=False)
y_train = Variable(y_train, requires_grad=False)
model.train()
optim_op.zero_grad()
output = model(X_train)
loss = calc_loss(loss_op, output, y_train)
loss.backward()
clip_grad_norm(model.parameters(), 1)
optim_op.step()
acc = evaluate_using_acc(model, [(X_train.data, y_train.data)])
print("== Epoch", epoch, "step", i, "train loss", loss.data.cpu().numpy()[0], "train acc", acc)
model.eval()
acc = evaluate_using_acc(model, val_gen)
print("val acc", acc)
val_loss = np.mean([calc_loss(loss_op, model(Variable(xv)), Variable(yv)).data.cpu().numpy()[0] for xv, yv in val_gen])
print("val loss", val_loss)
if best_loss is not None and val_loss >= best_loss:
epoch_without_impr += 1
print('No improvement over previous best loss: ', best_loss)
# Save checkpoint
if best_loss is None or val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), checkpoint_path)
print('Saving model at', checkpoint_path)
# Early stopping
if epoch_without_impr >= patience:
break
def get_data_loader(X_in, y_in, batch_size, extended_batch_sampler=True, epoch_size=25000, upsample=False, seed=42):
""" Returns a dataloader that enables larger epochs on small datasets and
has upsampling functionality.
# Arguments:
X_in: Inputs of the given dataset.
y_in: Outputs of the given dataset.
batch_size: Batch size.
epoch_size: Number of samples in an epoch.
upsample: Whether upsampling should be done. This flag should only be
set on binary class problems.
# Returns:
DataLoader.
"""
dataset = DeepMojiDataset(X_in, y_in)
if extended_batch_sampler:
batch_sampler = DeepMojiBatchSampler(y_in, batch_size, epoch_size=epoch_size, upsample=upsample, seed=seed)
else:
batch_sampler = BatchSampler(SequentialSampler(y_in), batch_size, drop_last=False)
return DataLoader(dataset, batch_sampler=batch_sampler, num_workers=0)
class DeepMojiDataset(Dataset):
""" A simple Dataset class.
# Arguments:
X_in: Inputs of the given dataset.
y_in: Outputs of the given dataset.
# __getitem__ output:
(torch.LongTensor, torch.LongTensor)
"""
def __init__(self, X_in, y_in):
# Check if we have Torch.LongTensor inputs (assume Numpy array otherwise)
if not isinstance(X_in, torch.LongTensor):
X_in = torch.from_numpy(X_in.astype('int64')).long()
if not isinstance(y_in, torch.LongTensor):
y_in = torch.from_numpy(y_in.astype('int64')).long()
self.X_in = torch.split(X_in, 1, dim=0)
self.y_in = torch.split(y_in, 1, dim=0)
def __len__(self):
return len(self.X_in)
def __getitem__(self, idx):
return self.X_in[idx].squeeze(), self.y_in[idx].squeeze()
class DeepMojiBatchSampler(object):
"""A Batch sampler that enables larger epochs on small datasets and
has upsampling functionality.
# Arguments:
y_in: Labels of the dataset.
batch_size: Batch size.
epoch_size: Number of samples in an epoch.
upsample: Whether upsampling should be done. This flag should only be
set on binary class problems.
seed: Random number generator seed.
# __iter__ output:
iterator of lists (batches) of indices in the dataset
"""
def __init__(self, y_in, batch_size, epoch_size, upsample, seed):
self.batch_size = batch_size
self.epoch_size = epoch_size
self.upsample = upsample
np.random.seed(seed)
if upsample:
# Should only be used on binary class problems
assert len(y_in.shape) == 1
neg = np.where(y_in.numpy() == 0)[0]
pos = np.where(y_in.numpy() == 1)[0]
assert epoch_size % 2 == 0
samples_pr_class = int(epoch_size / 2)
else:
ind = range(len(y_in))
if not upsample:
# Randomly sample observations in a balanced way
self.sample_ind = np.random.choice(ind, epoch_size, replace=True)
else:
# Randomly sample observations in a balanced way
sample_neg = np.random.choice(neg, samples_pr_class, replace=True)
sample_pos = np.random.choice(pos, samples_pr_class, replace=True)
concat_ind = np.concatenate((sample_neg, sample_pos), axis=0)
# Shuffle to avoid labels being in specific order
# (all negative then positive)
p = np.random.permutation(len(concat_ind))
self.sample_ind = concat_ind[p]
label_dist = np.mean(y_in.numpy()[self.sample_ind])
assert(label_dist > 0.45)
assert(label_dist < 0.55)
def __iter__(self):
# Hand-off data using batch_size
for i in range(int(self.epoch_size/self.batch_size)):
start = i * self.batch_size
end = min(start + self.batch_size, self.epoch_size)
yield self.sample_ind[start:end]
def __len__(self):
# Take care of the last (maybe incomplete) batch
return (self.epoch_size + self.batch_size - 1) // self.batch_size