CLIPRGB-ImStack / app.py
johnowhitaker's picture
Update app.py
c9bf0bf
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import kornia.augmentation as K
from CLIP import clip
from torchvision import transforms
from PIL import Image
import numpy as np
import math
from matplotlib import pyplot as plt
from fastprogress.fastprogress import master_bar, progress_bar
from IPython.display import HTML
from base64 import b64encode
# Definitions
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
# Set up CLIP
perceptor = clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
cut_size = perceptor.visual.input_resolution
cutn=64
cut_pow=1
make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)
# ImStack
class ImStack(nn.Module):
""" This class represents an image as a series of stacked arrays, where each is 1/2
the resolution of the next. This is useful eg when trying to create an image to minimise
some loss - parameters in the early (small) layers can have an affect on the overall
structure and shapes while those in later layers act as residuals and fill in fine detail.
"""
def __init__(self, n_layers=3, base_size=32, scale=2,
init_image=None, out_size=256, decay=0.7):
"""Constructs the Image Stack
Args:
TODO
"""
super().__init__()
self.n_layers = n_layers
self.base_size = base_size
self.sig = nn.Sigmoid()
self.layers = []
for i in range(n_layers):
side = base_size * (scale**i)
tim = torch.randn((3, side, side)).to(device)*(decay**i)
self.layers.append(tim)
self.scalers = [nn.Upsample(scale_factor=out_size/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
self.preview_scalers = [nn.Upsample(scale_factor=224/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
if init_image != None: # Given a PIL image, decompose it into a stack
downscalers = [nn.Upsample(scale_factor=(l.shape[1]/out_size), mode='bilinear', align_corners=False) for l in self.layers]
final_side = base_size * (scale ** n_layers)
im = torch.tensor(np.array(init_image.resize((out_size, out_size)))/255).clip(1e-03, 1-1e-3) # Between 0 and 1 (non-inclusive)
im = im.permute(2, 0, 1).unsqueeze(0).to(device) # torch.log(im/(1-im))
for i in range(n_layers):self.layers[i] *= 0 # Sero out the layers
for i in range(n_layers):
side = base_size * (scale**i)
out = self.forward()
residual = (torch.logit(im) - torch.logit(out))
Image.fromarray((torch.logit(residual).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)).save(f'residual{i}.png')
self.layers[i] = downscalers[i](residual).squeeze()
for l in self.layers: l.requires_grad = True
def forward(self):
im = self.scalers[0](self.layers[0].unsqueeze(0))
for i in range(1, self.n_layers):
im += self.scalers[i](self.layers[i].unsqueeze(0))
return self.sig(im)
def preview(self, n_preview=2):
im = self.preview_scalers[0](self.layers[0].unsqueeze(0))
for i in range(1, n_preview):
im += self.preview_scalers[i](self.layers[i].unsqueeze(0))
return self.sig(im)
def to_pil(self):
return Image.fromarray((self.forward().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))
def preview_pil(self):
return Image.fromarray((self.preview().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))
def save(self, fn):
self.to_pil().save(fn)
def plot_layers(self):
fig, axs = plt.subplots(1, self.n_layers, figsize=(15, 5))
for i in range(self.n_layers):
im = (self.sig(self.layers[i].unsqueeze(0)).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)
axs[i].imshow(im)
def generate(text, n_steps):
# Encode prompt
embed = perceptor.encode_text(clip.tokenize(text).to(device)).float()
#todo
return np.random.random((128, 128, 3)).astype(np.uint8)
iface = gr.Interface(fn=generate,
inputs=[
gr.inputs.Textbox(label="Text Input"),
gr.inputs.Number(default=42, label="N Steps")
],
outputs=[
gr.outputs.Image(type="numpy", label="Output Image")
],
).launch()