Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes:int=3, | |
seed:int=42): | |
"""Creates an EfficientNetB2 feature extractor model and transforms. | |
Args: | |
num_classes (int, optional): number of classes in the classifier head. | |
Defaults to 3. | |
seed (int, optional): random seed value. Defaults to 42. | |
Returns: | |
model (torch.nn.Module): EffNetB2 feature extractor model. | |
transforms (torchvision.transforms): EffNetB2 image transforms. | |
""" | |
# Create EffNetB2 pretrained weights, transforms and model | |
weights = torchvision.models.EfficientNet_B6_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b6(weights=weights) | |
# Freeze all layers in base model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Change classifier head with random seed for reproducibility | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes), | |
) | |
return model, transforms | |
def create_vit_model(num_classes:int=3, | |
seed:int=42): | |
"""Creates a ViT-B/16 feature extractor model and transforms. | |
Args: | |
num_classes (int, optional): number of target classes. Defaults to 3. | |
seed (int, optional): random seed value for output layer. Defaults to 42. | |
Returns: | |
model (torch.nn.Module): ViT-B/16 feature extractor model. | |
transforms (torchvision.transforms): ViT-B/16 image transforms. | |
""" | |
# Create ViT_B_16 pretrained weights, transforms and model | |
weights = torchvision.models.ViT_B_16_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.vit_b_16(weights=weights) | |
# Freeze all layers in model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Change classifier head to suit our needs (this will be trainable) | |
torch.manual_seed(seed) | |
model.heads = nn.Sequential(nn.Linear(in_features=768, # keep this the same as original model | |
out_features=num_classes)) # update to reflect target number of classes | |
return model, transforms | |