Spaces:
Runtime error
Runtime error
import cv2 | |
import imutils | |
import gradio as gr | |
import numpy as np | |
face_detector = cv2.CascadeClassifier("haar_cascades/haarcascade_frontalface_default.xml") | |
def detect_faces(img, size, neighbours, scale): | |
frame = np.array(img) | |
frame = frame[:, :, ::-1].copy() | |
frame = imutils.resize(frame, width=500) | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faceRects = face_detector.detectMultiScale( | |
gray, scaleFactor=scale, minNeighbors=neighbours, minSize=(size, size), | |
flags=cv2.CASCADE_SCALE_IMAGE) | |
box_data = [] | |
class_labels = { | |
0: "face" | |
} | |
for (x,y,w,h) in faceRects: | |
frame = cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) | |
midX = int(x+w/2) | |
midY = int(y+h/2) | |
box = { | |
"position": { | |
"middle": [midX, midY], | |
"width": float(w), | |
"height": float(h) | |
}, | |
"domain" : "pixel", | |
"class_id" : 0 | |
} | |
box_data.append(box) | |
predictions = {"predictions": { | |
"box_data": box_data, | |
"class_labels": class_labels | |
} | |
} | |
re_im =cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
return re_im | |
image = gr.components.Image() | |
out_im = gr.components.Image() | |
size_slider = gr.components.Slider(minimum=5, maximum=50, value=30, step=5, label="MinSize in Pixel") | |
neighbour_slider = gr.components.Slider(minimum=1, maximum=20, value=5, step=1, label="Min Number of Neighbours") | |
scale_slider = gr.components.Slider(minimum=1.1, maximum=2.0, value=1.3, step=0.1, label="Scale Factor") | |
description = """Face Detection with Haar Cascades using OpenCV""" | |
Iface = gr.Interface( | |
fn=detect_faces, | |
inputs=[image, size_slider, neighbour_slider, scale_slider], | |
outputs=out_im, | |
#examples=[["data/9_Press_Conference_Press_Conference_9_86.jpg"], ["data/12_Group_Group_12_Group_Group_12_39.jpg"], ["data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg"]], | |
title="Haar Cascade Object Detection", | |
).launch() |