Spaces:
Runtime error
Runtime error
| from fastai.text.all import * | |
| from huggingface_hub import from_pretrained_fastai | |
| import gradio as gr | |
| # Cargamos el learner | |
| repo_id = "joferngome/Emotions" | |
| learner = from_pretrained_fastai(repo_id) | |
| labels = learner.dls.vocab | |
| # Definimos las etiquetas de nuestro modelo | |
| #labels = list(range(28)) | |
| labels=["admiration","amusement","anger","annoyance","approval","caring","confusion","curiosity","desire","disappointment","disapproval","disgust","embarrasement", | |
| "excitement","fear","gratitude","grief","joy","love","nervousness","optimism","pride","realization","relief","remorse","sadness","surprise","neutral"] | |
| example1 = "As the gentle breeze caressed the emerald fields, a symphony of rustling leaves and chirping birds filled the air, creating a harmonious melody that echoed through the tranquil countryside." | |
| example2 = "In the midst of a bustling city, amidst the towering skyscrapers and buzzing crowds, two souls found solace in each other's embrace, their love creating a sanctuary of serenity amidst the chaos." | |
| example3 = "With each stroke of the artist's brush, the canvas transformed into a vibrant tapestry of colors, capturing the essence of life and evoking emotions that words alone could never convey." | |
| # Definimos una función que se encarga de llevar a cabo las predicciones | |
| def predict(text): | |
| probs= learner.predict(text)[2] | |
| # print(pred) | |
| # probs = pred['probs'] | |
| print(probs) | |
| return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
| # Creamos la interfaz y la lanzamos. | |
| gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(),examples=[example1,example2,example3]).launch(share=False,debug=True) | |