sparrow-API / routers /donut_training.py
katanaml's picture
Sparrow ML new services
dfcd6b0
raw
history blame
16.5 kB
# !pip install -q git+https://github.com/huggingface/transformers.git datasets sentencepiece
# !pip install -q pytorch-lightning==1.9.5 wandb
from config import settings
from datasets import load_dataset
from transformers import VisionEncoderDecoderConfig
from transformers import DonutProcessor, VisionEncoderDecoderModel
import json
import random
from typing import Any, List, Tuple
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import re
from nltk import edit_distance
import numpy as np
import os
import time
import pytorch_lightning as pl
from functools import lru_cache
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import Callback
from config import settings
added_tokens = []
dataset_name = settings.dataset
base_config_name = settings.base_config
base_processor_name = settings.base_processor
base_model_name = settings.base_model
model_name = settings.model
@lru_cache(maxsize=1)
def prepare_job():
print("Preparing job...")
dataset = load_dataset(dataset_name)
max_length = 768
image_size = [1280, 960]
# update image_size of the encoder
# during pre-training, a larger image size was used
config = VisionEncoderDecoderConfig.from_pretrained(base_config_name)
config.encoder.image_size = image_size # (height, width)
# update max_length of the decoder (for generation)
config.decoder.max_length = max_length
# TODO we should actually update max_position_embeddings and interpolate the pre-trained ones:
# https://github.com/clovaai/donut/blob/0acc65a85d140852b8d9928565f0f6b2d98dc088/donut/model.py#L602
processor = DonutProcessor.from_pretrained(base_processor_name)
model = VisionEncoderDecoderModel.from_pretrained(base_model_name, config=config)
return model, processor, dataset, config, image_size, max_length
class DonutDataset(Dataset):
"""
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string).
Args:
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
max_length: the max number of tokens for the target sequences
split: whether to load "train", "validation" or "test" split
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
task_start_token: the special token to be fed to the decoder to conduct the target task
prompt_end_token: the special token at the end of the sequences
sort_json_key: whether or not to sort the JSON keys
"""
def __init__(
self,
dataset_name_or_path: str,
max_length: int,
split: str = "train",
ignore_id: int = -100,
task_start_token: str = "<s>",
prompt_end_token: str = None,
sort_json_key: bool = True,
):
super().__init__()
model, processor, dataset, config, image_size, p1 = prepare_job()
self.max_length = max_length
self.split = split
self.ignore_id = ignore_id
self.task_start_token = task_start_token
self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
self.sort_json_key = sort_json_key
self.dataset = load_dataset(dataset_name_or_path, split=self.split)
self.dataset_length = len(self.dataset)
self.gt_token_sequences = []
for sample in self.dataset:
ground_truth = json.loads(sample["ground_truth"])
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
assert isinstance(ground_truth["gt_parses"], list)
gt_jsons = ground_truth["gt_parses"]
else:
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
gt_jsons = [ground_truth["gt_parse"]]
self.gt_token_sequences.append(
[
self.json2token(
gt_json,
update_special_tokens_for_json_key=self.split == "train",
sort_json_key=self.sort_json_key,
)
+ processor.tokenizer.eos_token
for gt_json in gt_jsons # load json from list of json
]
)
self.add_tokens([self.task_start_token, self.prompt_end_token])
self.prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token)
def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
"""
Convert an ordered JSON object into a token sequence
"""
if type(obj) == dict:
if len(obj) == 1 and "text_sequence" in obj:
return obj["text_sequence"]
else:
output = ""
if sort_json_key:
keys = sorted(obj.keys(), reverse=True)
else:
keys = obj.keys()
for k in keys:
if update_special_tokens_for_json_key:
self.add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
output += (
fr"<s_{k}>"
+ self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
+ fr"</s_{k}>"
)
return output
elif type(obj) == list:
return r"<sep/>".join(
[self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
)
else:
obj = str(obj)
if f"<{obj}/>" in added_tokens:
obj = f"<{obj}/>" # for categorical special tokens
return obj
def add_tokens(self, list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings of the decoder
"""
model, processor, dataset, config, image_size, p1 = prepare_job()
newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)
if newly_added_num > 0:
model.decoder.resize_token_embeddings(len(processor.tokenizer))
added_tokens.extend(list_of_tokens)
def __len__(self) -> int:
return self.dataset_length
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Load image from image_path of given dataset_path and convert into input_tensor and labels
Convert gt data into input_ids (tokenized string)
Returns:
input_tensor : preprocessed image
input_ids : tokenized gt_data
labels : masked labels (model doesn't need to predict prompt and pad token)
"""
model, processor, dataset, config, image_size, p1 = prepare_job()
sample = self.dataset[idx]
# inputs
pixel_values = processor(sample["image"], random_padding=self.split == "train",
return_tensors="pt").pixel_values
pixel_values = pixel_values.squeeze()
# targets
target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1
input_ids = processor.tokenizer(
target_sequence,
add_special_tokens=False,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)["input_ids"].squeeze(0)
labels = input_ids.clone()
labels[labels == processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token
# labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA)
return pixel_values, labels, target_sequence
def build_data_loaders():
print("Building data loaders...")
model, processor, dataset, config, image_size, max_length = prepare_job()
# we update some settings which differ from pretraining; namely the size of the images + no rotation required
# source: https://github.com/clovaai/donut/blob/master/config/train_cord.yaml
processor.feature_extractor.size = image_size[::-1] # should be (width, height)
processor.feature_extractor.do_align_long_axis = False
train_dataset = DonutDataset(dataset_name, max_length=max_length,
split="train", task_start_token="<s_cord-v2>", prompt_end_token="<s_cord-v2>",
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
val_dataset = DonutDataset(dataset_name, max_length=max_length,
split="validation", task_start_token="<s_cord-v2>", prompt_end_token="<s_cord-v2>",
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
# feel free to increase the batch size if you have a lot of memory
# I'm fine-tuning on Colab and given the large image size, batch size > 1 is not feasible
# Set num_workers=4
train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4)
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4)
return train_dataloader, val_dataloader, max_length
class DonutModelPLModule(pl.LightningModule):
def __init__(self, config, processor, model):
super().__init__()
self.config = config
self.processor = processor
self.model = model
self.train_dataloader, self.val_dataloader, self.max_length = build_data_loaders()
def training_step(self, batch, batch_idx):
pixel_values, labels, _ = batch
outputs = self.model(pixel_values, labels=labels)
loss = outputs.loss
self.log_dict({"train_loss": loss}, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx, dataset_idx=0):
pixel_values, labels, answers = batch
batch_size = pixel_values.shape[0]
# we feed the prompt to the model
decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device)
outputs = self.model.generate(pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=self.max_length,
early_stopping=True,
pad_token_id=self.processor.tokenizer.pad_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
return_dict_in_generate=True, )
predictions = []
for seq in self.processor.tokenizer.batch_decode(outputs.sequences):
seq = seq.replace(self.processor.tokenizer.eos_token, "").replace(self.processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
predictions.append(seq)
scores = list()
for pred, answer in zip(predictions, answers):
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
# NOT NEEDED ANYMORE
# answer = re.sub(r"<.*?>", "", answer, count=1)
answer = answer.replace(self.processor.tokenizer.eos_token, "")
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))
if self.config.get("verbose", False) and len(scores) == 1:
print(f"Prediction: {pred}")
print(f" Answer: {answer}")
print(f" Normed ED: {scores[0]}")
return scores
def validation_epoch_end(self, validation_step_outputs):
# I set this to 1 manually
# (previously set to len(self.config.dataset_name_or_paths))
num_of_loaders = 1
if num_of_loaders == 1:
validation_step_outputs = [validation_step_outputs]
assert len(validation_step_outputs) == num_of_loaders
cnt = [0] * num_of_loaders
total_metric = [0] * num_of_loaders
val_metric = [0] * num_of_loaders
for i, results in enumerate(validation_step_outputs):
for scores in results:
cnt[i] += len(scores)
total_metric[i] += np.sum(scores)
val_metric[i] = total_metric[i] / cnt[i]
val_metric_name = f"val_metric_{i}th_dataset"
self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)
def configure_optimizers(self):
# TODO add scheduler
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.get("lr"))
return optimizer
def train_dataloader(self):
return self.train_dataloader
def val_dataloader(self):
return self.val_dataloader
class PushToHubCallback(Callback):
def on_train_epoch_end(self, trainer, pl_module):
print(f"Pushing model to the hub, epoch {trainer.current_epoch}")
pl_module.model.push_to_hub(model_name,
commit_message=f"Training in progress, epoch {trainer.current_epoch}")
def on_train_end(self, trainer, pl_module):
print(f"Pushing model to the hub after training")
pl_module.processor.push_to_hub(model_name,
commit_message=f"Training done")
pl_module.model.push_to_hub(model_name,
commit_message=f"Training done")
def run_training_donut(max_epochs_param, val_check_interval_param, warmup_steps_param):
worker_pid = os.getpid()
print(f"Handling training request with worker PID: {worker_pid}")
start_time = time.time()
# Set epochs = 30
# Set num_training_samples_per_epoch = training set size
# Set val_check_interval = 0.4
# Set warmup_steps: 425 / 8 = 54, 54 * 10 = 540, 540 * 0.15 = 81
config_params = {"max_epochs": max_epochs_param,
"val_check_interval": val_check_interval_param, # how many times we want to validate during an epoch
"check_val_every_n_epoch": 1,
"gradient_clip_val": 1.0,
"num_training_samples_per_epoch": 425,
"lr": 3e-5,
"train_batch_sizes": [8],
"val_batch_sizes": [1],
# "seed":2022,
"num_nodes": 1,
"warmup_steps": warmup_steps_param, # 425 / 8 = 54, 54 * 10 = 540, 540 * 0.15 = 81
"result_path": "./result",
"verbose": False,
}
model, processor, dataset, config, image_size, p1 = prepare_job()
model_module = DonutModelPLModule(config, processor, model)
# wandb_logger = WandbLogger(project="sparrow", name="invoices-donut-v5")
# trainer = pl.Trainer(
# accelerator="gpu",
# devices=1,
# max_epochs=config_params.get("max_epochs"),
# val_check_interval=config_params.get("val_check_interval"),
# check_val_every_n_epoch=config_params.get("check_val_every_n_epoch"),
# gradient_clip_val=config_params.get("gradient_clip_val"),
# precision=16, # we'll use mixed precision
# num_sanity_val_steps=0,
# # logger=wandb_logger,
# callbacks=[PushToHubCallback()],
# )
# trainer.fit(model_module)
end_time = time.time()
processing_time = end_time - start_time
print(f"Training done, worker PID: {worker_pid}")
return processing_time