discover_rag / app.py
joelg's picture
FIX allowable embedding models
b0271ee
import gradio as gr
import spaces
from rag_system import RAGSystem
from i18n import get_text
# Initialize RAG system
rag = RAGSystem()
@spaces.GPU
def process_pdf(pdf_file, embedding_model, chunk_size, chunk_overlap):
"""Process uploaded PDF and create embeddings"""
try:
# Set embedding model BEFORE processing
rag.set_embedding_model(embedding_model)
if pdf_file is None:
# Load default corpus
status, chunks_display, corpus_text = rag.load_default_corpus(chunk_size, chunk_overlap)
else:
status, chunks_display, corpus_text = rag.process_document(pdf_file.name, chunk_size, chunk_overlap)
# Generate example questions based on the corpus
example_questions = rag.generate_example_questions(num_questions=5)
return status, chunks_display, corpus_text, example_questions
except Exception as e:
return f"Error: {str(e)}", "", "", []
@spaces.GPU
def perform_query(
query,
top_k,
similarity_threshold,
llm_model,
temperature,
max_tokens
):
"""Perform RAG query and return results"""
if not rag.is_ready():
return "", "⚠️ Please process a corpus first in the Corpus tab.", "", ""
try:
# Set LLM model
rag.set_llm_model(llm_model)
# Retrieve relevant chunks
results = rag.retrieve(query, top_k, similarity_threshold)
# Format retrieved chunks display
chunks_display = format_chunks(results)
# Generate answer
answer, prompt = rag.generate(
query,
results,
temperature,
max_tokens
)
return chunks_display, prompt, answer, ""
except Exception as e:
import traceback
error_details = traceback.format_exc()
return "", "", "", f"❌ Error: {str(e)}\n\nFull traceback:\n{error_details}"
def format_chunks(results):
"""Format retrieved chunks with scores for display"""
if not results:
return "No relevant chunks found."
output = "### 📄 Retrieved Chunks\n\n"
for i, (chunk, score) in enumerate(results, 1):
output += f"**Chunk {i}** - Similarity Score: `{score:.4f}`\n"
output += f"```\n{chunk}\n```\n\n"
return output
def create_interface():
with gr.Blocks(title="RAG Pedagogical Demo", theme=gr.themes.Soft()) as demo:
# Header - Bilingual
gr.Markdown("# 🎓 RAG Pedagogical Demo / Démo Pédagogique RAG")
gr.Markdown("*A pedagogical tool to understand Retrieval Augmented Generation / Un outil pédagogique pour comprendre la génération augmentée par récupération*")
with gr.Tabs() as tabs:
# Tab 1: Corpus Management
with gr.Tab(label="📚 Corpus"):
gr.Markdown("## Corpus Management / Gestion du Corpus")
gr.Markdown("""
**EN - Default corpus:** Multiple PDF documents from the `documents/` folder. Or upload your own PDF.
**FR - Corpus par défaut :** Plusieurs documents PDF du dossier `documents/`. Ou téléchargez votre propre PDF.
1. Select your embedding model / Sélectionnez votre modèle d'embedding
2. Adjust chunking parameters if needed / Ajustez les paramètres de découpage si nécessaire
3. Click "Process Corpus" / Cliquez sur "Process Corpus"
""")
# Embedding model selection FIRST
embedding_model = gr.Dropdown(
choices=[
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
"intfloat/multilingual-e5-base",
"ibm-granite/granite-embedding-107m-multilingual",
],
value="sentence-transformers/all-MiniLM-L6-v2",
label="🔤 Embedding Model / Modèle d'Embedding (select before processing / sélectionnez avant traitement)"
)
pdf_upload = gr.File(
label="📄 Upload PDF / Télécharger PDF (optional / optionnel)",
file_types=[".pdf"]
)
with gr.Row():
chunk_size = gr.Slider(
minimum=100,
maximum=1000,
value=500,
step=50,
label="Chunk Size / Taille des Chunks (characters / caractères)"
)
chunk_overlap = gr.Slider(
minimum=0,
maximum=200,
value=50,
step=10,
label="Chunk Overlap / Chevauchement (characters / caractères)"
)
process_btn = gr.Button("🚀 Process Corpus / Traiter le Corpus", variant="primary", size="lg")
corpus_status = gr.Textbox(label="Status / Statut", interactive=False)
# Display default corpus info
with gr.Accordion("📖 Corpus Information / Informations sur le Corpus", open=False):
default_corpus_display = gr.Markdown()
# Display processed chunks
with gr.Accordion("📑 Processed Chunks / Chunks Traités", open=False):
processed_chunks_display = gr.Markdown()
# State to hold example questions
example_questions_state = gr.State([])
process_btn.click(
fn=process_pdf,
inputs=[pdf_upload, embedding_model, chunk_size, chunk_overlap],
outputs=[corpus_status, processed_chunks_display, default_corpus_display, example_questions_state]
)
# Tab 2: Retrieval Configuration
with gr.Tab(label="🔍 Retrieval / Récupération"):
gr.Markdown("## Retrieval Configuration / Configuration de la Récupération")
gr.Markdown("""
**EN:** Configure how relevant chunks are retrieved from the corpus.
**FR:** Configurez comment les chunks pertinents sont récupérés du corpus.
""")
gr.Markdown("**Current Embedding Model / Modèle d'Embedding Actuel:** The model selected in the Corpus tab / Le modèle sélectionné dans l'onglet Corpus")
with gr.Row():
top_k = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Top K (number of chunks / nombre de chunks à récupérer)"
)
similarity_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
label="Similarity Threshold / Seuil de Similarité (minimum score / score minimum)"
)
# Tab 3: Generation Configuration
with gr.Tab(label="🤖 Generation / Génération"):
gr.Markdown("## Generation Configuration / Configuration de la Génération")
gr.Markdown("""
**EN:** Select the language model and configure generation parameters.
**FR:** Sélectionnez le modèle de langage et configurez les paramètres de génération.
""")
llm_model = gr.Dropdown(
choices=[
"meta-llama/Llama-3.2-1B-Instruct",
"Qwen/Qwen3-1.7B",
"google/gemma-2-2b-it",
],
value="meta-llama/Llama-3.2-1B-Instruct",
label="Language Model / Modèle de Langage"
)
with gr.Row():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature / Température (creativity / créativité)"
)
max_tokens = gr.Slider(
minimum=100,
maximum=2048,
value=800,
step=50,
label="Max Tokens (response length / longueur réponse - higher for reasoning / plus pour raisonnement)"
)
# Tab 4: Query & Results
with gr.Tab(label="💬 Query / Requête"):
gr.Markdown("## Ask a Question / Posez une Question")
query_input = gr.Textbox(
label="Your Question / Votre Question",
placeholder="Enter your question here / Entrez votre question ici...",
lines=3
)
with gr.Accordion("💡 Example Questions / Questions d'Exemple (click to expand / cliquez pour développer)", open=True):
gr.Markdown("*Questions generated based on your corpus content / Questions générées à partir de votre corpus*")
examples_markdown = gr.Markdown(visible=False)
# Connect processing to update examples
def format_questions_markdown(questions):
if not questions or len(questions) == 0:
return gr.update(value="", visible=False)
md = ""
for i, q in enumerate(questions, 1):
md += f"{i}. {q}\n\n"
return gr.update(value=md, visible=True)
example_questions_state.change(
fn=format_questions_markdown,
inputs=[example_questions_state],
outputs=[examples_markdown]
)
query_btn = gr.Button("🔍 Submit Query", variant="primary", size="lg")
# Results in order: chunks → prompt → answer
gr.Markdown("---")
gr.Markdown("### 📊 Results")
with gr.Accordion("1️⃣ Retrieved Chunks", open=True):
chunks_output = gr.Markdown()
with gr.Accordion("2️⃣ Prompt Sent to LLM", open=True):
prompt_output = gr.Textbox(lines=10, max_lines=20, show_copy_button=True)
with gr.Accordion("3️⃣ Generated Answer", open=True):
answer_output = gr.Markdown()
error_output = gr.Textbox(label="Errors", visible=False)
query_btn.click(
fn=perform_query,
inputs=[
query_input,
top_k,
similarity_threshold,
llm_model,
temperature,
max_tokens
],
outputs=[chunks_output, prompt_output, answer_output, error_output]
)
# Footer
gr.Markdown("""
---
**Note**: This is a pedagogical demonstration of RAG systems.
Models run on HuggingFace infrastructure.
**Note** : Ceci est une démonstration pédagogique des systèmes RAG.
Les modèles tournent sur l'infrastructure HuggingFace.
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()