Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,879 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
from xgboost import XGBClassifier
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
from sklearn.decomposition import PCA
|
10 |
+
from sklearn.metrics import precision_recall_curve, roc_curve, confusion_matrix, classification_report
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import shap
|
13 |
+
import plotly.express as px
|
14 |
+
import streamlit as st
|
15 |
+
import pandas as pd
|
16 |
+
import datetime
|
17 |
+
import json
|
18 |
+
import requests
|
19 |
+
from streamlit_lottie import st_lottie
|
20 |
+
import streamlit.components.v1 as components
|
21 |
+
from streamlit_navigation_bar import st_navbar
|
22 |
+
from transformers import AutoTokenizer, AutoModel
|
23 |
+
import re
|
24 |
+
from tqdm import tqdm
|
25 |
+
import torch
|
26 |
+
import os
|
27 |
+
from hugchat.login import Login
|
28 |
+
from hugchat import hugchat
|
29 |
+
from transformers import pipeline
|
30 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
31 |
+
import torch.nn as nn
|
32 |
+
import time
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
pages = ["Home", "Tabular data", "Clinical text notes", "Ensemble prediction"]
|
37 |
+
|
38 |
+
styles = {
|
39 |
+
"nav": {
|
40 |
+
"background-color": "rgba(0, 0, 0, 0.5)",
|
41 |
+
# Add 50% transparency
|
42 |
+
},
|
43 |
+
"div": {
|
44 |
+
"max-width": "32rem",
|
45 |
+
},
|
46 |
+
"span": {
|
47 |
+
"border-radius": "0.26rem",
|
48 |
+
"color": "rgb(255 ,255, 255)",
|
49 |
+
"margin": "0 0.225rem",
|
50 |
+
"padding": "0.375rem 0.625rem",
|
51 |
+
},
|
52 |
+
"active": {
|
53 |
+
"background-color": "rgba(0 ,0, 200, 0.95)",
|
54 |
+
},
|
55 |
+
"hover": {
|
56 |
+
"background-color": "rgba(255, 255, 255, 0.95)",
|
57 |
+
},
|
58 |
+
}
|
59 |
+
|
60 |
+
page = st_navbar(pages, styles=styles)
|
61 |
+
|
62 |
+
if page=="Home":
|
63 |
+
|
64 |
+
st.markdown("""
|
65 |
+
<style>
|
66 |
+
.title {
|
67 |
+
text-align: center;
|
68 |
+
font-size: 36px;
|
69 |
+
font-weight: bold;
|
70 |
+
color: #2C3E50;
|
71 |
+
}
|
72 |
+
.subtitle {
|
73 |
+
text-align: center;
|
74 |
+
font-size: 22px;
|
75 |
+
color: #7F8C8D;
|
76 |
+
}
|
77 |
+
.box {
|
78 |
+
background-color: #ECF0F1;
|
79 |
+
padding: 15px;
|
80 |
+
border-radius: 10px;
|
81 |
+
text-align: center;
|
82 |
+
margin-bottom: 10px;
|
83 |
+
font-size: 18px;
|
84 |
+
}
|
85 |
+
</style>
|
86 |
+
""", unsafe_allow_html=True)
|
87 |
+
|
88 |
+
# Header
|
89 |
+
st.markdown("<h1 class='title'>📊 AI Clinical Readmission Predictor</h1>", unsafe_allow_html=True)
|
90 |
+
st.markdown("<h2 class='subtitle'>Using Machine Learning for Better Patient Outcomes</h2>", unsafe_allow_html=True)
|
91 |
+
image_1 ='https://content.presspage.com/uploads/2110/4970f578-5f20-4675-acc2-3b2cda25fa96/1920_ai-machine-learning-cedars-sinai.jpg?10000'
|
92 |
+
image_2 = 'https://med-tech.world/app/uploads/2024/10/AI-Hospitals.jpg.webp'
|
93 |
+
|
94 |
+
|
95 |
+
st.image(image_2, width=1350) # Hospital Icon
|
96 |
+
|
97 |
+
st.write("This app helps predict patient readmission risk using machine learning models. "
|
98 |
+
"Upload data, analyze clinical notes, and see predictions from our ensemble model.")
|
99 |
+
|
100 |
+
# Navigation Buttons
|
101 |
+
st.markdown("---")
|
102 |
+
st.markdown("<h3 style='text-align: center;'>🚀 Explore the App</h3>", unsafe_allow_html=True)
|
103 |
+
|
104 |
+
elif page== "Tabular data":
|
105 |
+
|
106 |
+
# Function to load Lottie animation
|
107 |
+
def load_lottie(url):
|
108 |
+
response = requests.get(url)
|
109 |
+
if response.status_code != 200:
|
110 |
+
return None
|
111 |
+
return response.json()
|
112 |
+
|
113 |
+
# Load Lottie Animation
|
114 |
+
lottie_hello = load_lottie("https://assets7.lottiefiles.com/packages/lf20_jcikwtux.json")
|
115 |
+
if lottie_hello:
|
116 |
+
st_lottie(lottie_hello, speed=1, loop=True, height=200)
|
117 |
+
|
118 |
+
# Load dataset
|
119 |
+
df = pd.read_csv('/Users/joaopimenta/Downloads/ensemble_test.csv')
|
120 |
+
|
121 |
+
# Streamlit App Header
|
122 |
+
st.title('🏥 Hospital Readmission Prediction')
|
123 |
+
st.markdown("""
|
124 |
+
<h3 style='text-align: center; color: gray;'>Predict ICU hospital readmission using Artificial Intelligence</h3>
|
125 |
+
""", unsafe_allow_html=True)
|
126 |
+
st.markdown("---")
|
127 |
+
|
128 |
+
# Helper Functions
|
129 |
+
def get_age_group(age):
|
130 |
+
"""Classify age into predefined groups with correct column names."""
|
131 |
+
if 36 <= age <= 50:
|
132 |
+
return "age_group_36-50 (Middle-Aged Adults)"
|
133 |
+
elif 51 <= age <= 65:
|
134 |
+
return "age_group_51-65 (Older Middle-Aged Adults)"
|
135 |
+
elif 66 <= age <= 80:
|
136 |
+
return "age_group_66-80 (Senior Adults)"
|
137 |
+
elif age >= 81:
|
138 |
+
return "age_group_81+ (Elderly)"
|
139 |
+
return "age_group_Below_36"
|
140 |
+
|
141 |
+
|
142 |
+
def get_period(hour):
|
143 |
+
"""Determine admission/discharge period."""
|
144 |
+
return "Morning" if 6 <= hour < 18 else "Night"
|
145 |
+
|
146 |
+
# **User Inputs**
|
147 |
+
st.subheader("📌 Select the admission's Characteristics")
|
148 |
+
|
149 |
+
admission_type = st.selectbox("🛑 Type of Admission", df.columns[df.columns.str.startswith('admission_type_')])
|
150 |
+
admission_location = st.selectbox("📍 Admission Location", df.columns[df.columns.str.startswith('admission_location_')])
|
151 |
+
discharge_location = st.selectbox("🏥 Discharge Location", df.columns[df.columns.str.startswith('discharge_location_')])
|
152 |
+
insurance = st.selectbox("💰 Insurance Type", df.columns[df.columns.str.startswith('insurance_')])
|
153 |
+
|
154 |
+
st.sidebar.subheader("📊 Patient Information")
|
155 |
+
language = st.sidebar.selectbox("🗣 Language", df.columns[df.columns.str.startswith('language_')])
|
156 |
+
marital_status = st.sidebar.selectbox("💍 Marital Status", df.columns[df.columns.str.startswith('marital_status_')])
|
157 |
+
race = st.sidebar.selectbox("🧑 Race", df.columns[df.columns.str.startswith('race_')])
|
158 |
+
sex = st.sidebar.selectbox("⚧ Sex", ['gender_M', 'gender_F'])
|
159 |
+
age = st.sidebar.slider("📅 Age", 18, 100, 50)
|
160 |
+
|
161 |
+
admission_time = st.time_input("⏳ Admission Time", value=datetime.time(12, 0))
|
162 |
+
discharge_time = st.time_input("⏳ Discharge Time", value=datetime.time(12, 0))
|
163 |
+
|
164 |
+
# Laboratory & Clinical Values
|
165 |
+
st.subheader("📈 Clinical Values")
|
166 |
+
numerical_features = ['los_days', 'previous_stays', 'n_meds', 'drg_severity', 'drg_mortality', 'time_since_last_stay',
|
167 |
+
'blood_cells', 'hemoglobin', 'glucose', 'creatine', 'plaquete']
|
168 |
+
numeric_inputs = {}
|
169 |
+
cols = st.columns(len(numerical_features))
|
170 |
+
|
171 |
+
# General Numerical Values
|
172 |
+
st.subheader("📊 General Hosptal Information")
|
173 |
+
general_numerical_features = ['los_days', 'previous_stays', 'n_meds', 'drg_severity',
|
174 |
+
'drg_mortality', 'time_since_last_stay']
|
175 |
+
|
176 |
+
general_inputs = {}
|
177 |
+
cols = st.columns(3) # Three columns for general values
|
178 |
+
|
179 |
+
for i, feature in enumerate(general_numerical_features):
|
180 |
+
col_index = i % 3 # Distribute across columns
|
181 |
+
min_val, max_val = df[feature].min(), df[feature].max()
|
182 |
+
|
183 |
+
with cols[col_index]:
|
184 |
+
general_inputs[feature] = st.slider(
|
185 |
+
f"📌 {feature.replace('_', ' ').title()}",
|
186 |
+
float(min_val),
|
187 |
+
float(max_val),
|
188 |
+
float((min_val + max_val) / 2)
|
189 |
+
)
|
190 |
+
|
191 |
+
# Laboratory Values
|
192 |
+
st.subheader("🧪 Laboratory Test Results")
|
193 |
+
lab_numerical_features = ['blood_cells', 'hemoglobin', 'glucose',
|
194 |
+
'creatine', 'plaquete']
|
195 |
+
|
196 |
+
lab_inputs = {}
|
197 |
+
lab_cols = st.columns(3) # Three columns for lab values
|
198 |
+
|
199 |
+
for i, feature in enumerate(lab_numerical_features):
|
200 |
+
col_index = i % 3 # Distribute across columns
|
201 |
+
min_val, max_val = df[feature].min(), df[feature].max()
|
202 |
+
|
203 |
+
with lab_cols[col_index]:
|
204 |
+
lab_inputs[feature] = st.slider(
|
205 |
+
f"🩸 {feature.replace('_', ' ').title()}",
|
206 |
+
float(min_val),
|
207 |
+
float(max_val),
|
208 |
+
float((min_val + max_val) / 2)
|
209 |
+
)
|
210 |
+
min_val, max_val = df["cci_score"].min(), df["cci_score"].max()
|
211 |
+
lab_inputs["cci_score"] = st.sidebar.slider(
|
212 |
+
f"📌 CCI Score",
|
213 |
+
float(min_val),
|
214 |
+
float(max_val),
|
215 |
+
float((min_val + max_val) / 2)
|
216 |
+
)
|
217 |
+
|
218 |
+
# Process Inputs into Features
|
219 |
+
feature_vector = {col: 0 for col in df.columns}
|
220 |
+
feature_vector.update({
|
221 |
+
admission_type: 1,
|
222 |
+
admission_location: 1,
|
223 |
+
discharge_location: 1,
|
224 |
+
insurance: 1,
|
225 |
+
language: 1,
|
226 |
+
marital_status: 1,
|
227 |
+
race: 1,
|
228 |
+
"gender_M": 1 if sex == "gender_M" else 0,
|
229 |
+
f"admit_period_{get_period(admission_time.hour)}": 1,
|
230 |
+
f"discharge_period_{get_period(discharge_time.hour)}": 1
|
231 |
+
})
|
232 |
+
age_group = get_age_group(age) # This function now returns correct dataset column names
|
233 |
+
|
234 |
+
# Use the exact column names from the dataset
|
235 |
+
for group in [
|
236 |
+
"age_group_36-50 (Middle-Aged Adults)",
|
237 |
+
"age_group_51-65 (Older Middle-Aged Adults)",
|
238 |
+
"age_group_66-80 (Senior Adults)",
|
239 |
+
"age_group_81+ (Elderly)"
|
240 |
+
]:
|
241 |
+
feature_vector[group] = 1 if group == age_group else 0 # Set selected group to 1, others to 0
|
242 |
+
|
243 |
+
feature_vector.update(numeric_inputs)
|
244 |
+
# Display Processed Data
|
245 |
+
st.markdown("---")
|
246 |
+
|
247 |
+
# Load XGBoost model
|
248 |
+
tabular_model_path = "/Users/joaopimenta/Downloads/final_xgboost_model.pkl"
|
249 |
+
tabular_model = joblib.load(tabular_model_path)
|
250 |
+
print("✅ XGBoost Tabular Model loaded successfully!")
|
251 |
+
|
252 |
+
# Load dataset columns (use the same order as training)
|
253 |
+
expected_columns = [
|
254 |
+
col for col in df.columns if col not in ["Unnamed: 0", "subject_id", "hadm_id", "probs"]
|
255 |
+
]
|
256 |
+
|
257 |
+
# Define correct dataset column names for age groups
|
258 |
+
age_group_mapping = {
|
259 |
+
"age_group_36-50": "age_group_36-50 (Middle-Aged Adults)",
|
260 |
+
"age_group_51-65": "age_group_51-65 (Older Middle-Aged Adults)",
|
261 |
+
"age_group_66-80": "age_group_66-80 (Senior Adults)",
|
262 |
+
"age_group_81+": "age_group_81+ (Elderly)",
|
263 |
+
}
|
264 |
+
|
265 |
+
# Process Inputs into Features
|
266 |
+
feature_vector = {col: 0 for col in df.columns}
|
267 |
+
|
268 |
+
# Set selected categorical features to 1
|
269 |
+
feature_vector.update({
|
270 |
+
admission_type: 1,
|
271 |
+
admission_location: 1,
|
272 |
+
discharge_location: 1,
|
273 |
+
insurance: 1,
|
274 |
+
language: 1,
|
275 |
+
marital_status: 1,
|
276 |
+
race: 1,
|
277 |
+
"gender_M": 1 if sex == "gender_M" else 0,
|
278 |
+
f"admit_period_{get_period(admission_time.hour)}": 1,
|
279 |
+
f"discharge_period_{get_period(discharge_time.hour)}": 1
|
280 |
+
})
|
281 |
+
|
282 |
+
# Set correct age group
|
283 |
+
age_group = get_age_group(age)
|
284 |
+
for group in [
|
285 |
+
"age_group_36-50 (Middle-Aged Adults)",
|
286 |
+
"age_group_51-65 (Older Middle-Aged Adults)",
|
287 |
+
"age_group_66-80 (Senior Adults)",
|
288 |
+
"age_group_81+ (Elderly)"
|
289 |
+
]:
|
290 |
+
feature_vector[group] = 1 if group == age_group else 0
|
291 |
+
|
292 |
+
# Update with numerical inputs
|
293 |
+
feature_vector.update(general_inputs)
|
294 |
+
feature_vector.update(lab_inputs)
|
295 |
+
|
296 |
+
# Ensure feature order matches expected model input
|
297 |
+
fixed_feature_vector = {age_group_mapping.get(k, k): v for k, v in feature_vector.items()}
|
298 |
+
feature_df = pd.DataFrame([fixed_feature_vector]).reindex(columns=expected_columns, fill_value=0)
|
299 |
+
|
300 |
+
st.write(feature_df)
|
301 |
+
# Predict probability of readmission
|
302 |
+
prediction_proba = tabular_model.predict_proba(feature_df)[:, 1]
|
303 |
+
probability = float(prediction_proba[0]) # Convert NumPy array to scalar
|
304 |
+
st.session_state["XGBoost probability"] = probability
|
305 |
+
prediction = (prediction_proba >= 0.5).astype(int)
|
306 |
+
|
307 |
+
import shap
|
308 |
+
import matplotlib.pyplot as plt
|
309 |
+
import streamlit.components.v1 as components # Required for displaying SHAP force plot
|
310 |
+
|
311 |
+
st.write(f"Raw Prediction Probability: {probability:.4f}")
|
312 |
+
|
313 |
+
# Prediction Button
|
314 |
+
if st.button("🚀 Predict Readmission"):
|
315 |
+
with st.spinner("🔍 Processing Prediction..."):
|
316 |
+
st.subheader("🎯 Prediction Results")
|
317 |
+
col1, col2 = st.columns(2)
|
318 |
+
|
319 |
+
with col1:
|
320 |
+
st.metric(label="🧮 Readmission Probability", value=f"{probability:.2%}")
|
321 |
+
|
322 |
+
with col2:
|
323 |
+
if prediction == 1:
|
324 |
+
st.error("⚠️ High Risk of Readmission")
|
325 |
+
else:
|
326 |
+
st.success("✅ Low Risk of Readmission")
|
327 |
+
|
328 |
+
# Feature Importance Button
|
329 |
+
if st.button("🔍 Feature Importance for Prediction"):
|
330 |
+
st.metric(label="🧮 Readmission Probability", value=f"{probability:.2%}")
|
331 |
+
# ✅ Initialize SHAP Explainer for XGBoost
|
332 |
+
explainer = shap.TreeExplainer(tabular_model)
|
333 |
+
shap_values = explainer.shap_values(feature_df) # SHAP values for all samples
|
334 |
+
|
335 |
+
# ✅ Convert SHAP values into a DataFrame (Sorting First)
|
336 |
+
shap_df = pd.DataFrame({
|
337 |
+
"Feature": feature_df.columns,
|
338 |
+
"SHAP Value": shap_values[0] # SHAP values for the first instance
|
339 |
+
})
|
340 |
+
|
341 |
+
# ✅ Select **Top 10 Most Important Features** (Sorted by Absolute SHAP Value)
|
342 |
+
shap_df["abs_SHAP"] = shap_df["SHAP Value"].abs() # Add column with absolute values
|
343 |
+
shap_df = shap_df.sort_values(by="abs_SHAP", ascending=False).head(10) # Top 10
|
344 |
+
|
345 |
+
# Get top features and their SHAP impact values (shap_df assumed to be available)
|
346 |
+
top_features = sorted(zip(shap_df['Feature'], shap_df['SHAP Value']), key=lambda x: abs(x[1]), reverse=True)
|
347 |
+
|
348 |
+
# Create a formatted string for `top_factors` to be shown in the UI
|
349 |
+
top_factors = "\n".join([f"- {feat}: {round(value, 2)} impact" for feat, value in top_features])
|
350 |
+
|
351 |
+
# ✅ Login to HuggingChat (credentials hard-coded here)
|
352 |
+
EMAIL = st.secrets["email"]
|
353 |
+
PASSWD = st.secrets["passwd"]
|
354 |
+
cookie_path_dir = "./cookies_snapshot"
|
355 |
+
|
356 |
+
# Log in and save cookies
|
357 |
+
try:
|
358 |
+
sign = Login(EMAIL, PASSWD)
|
359 |
+
cookies = sign.login(cookie_dir_path=cookie_path_dir, save_cookies=True)
|
360 |
+
sign.saveCookiesToDir(cookie_path_dir)
|
361 |
+
except Exception as e:
|
362 |
+
st.error(f"❌ Login to HuggingChat failed. Error: {e}")
|
363 |
+
st.stop()
|
364 |
+
|
365 |
+
# ✅ Create HuggingChat bot instance
|
366 |
+
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
367 |
+
|
368 |
+
# 🎭 **Streamlit UI**
|
369 |
+
st.title("🩺 AI-Powered Patient Readmission Analysis")
|
370 |
+
|
371 |
+
# ✅ Construct the AI query with real SHAP feature impacts
|
372 |
+
# ✅ Construct the AI query with real SHAP feature impacts
|
373 |
+
hugging_prompt = f"""
|
374 |
+
A hospital AI model predicts patient readmission based on the following feature impacts:
|
375 |
+
{top_factors}
|
376 |
+
|
377 |
+
Can you explain why the model made this decision? Specifically, what were the key characteristics of the patient or their admission that influenced the model’s prediction the most?
|
378 |
+
"""
|
379 |
+
|
380 |
+
# ✅ Query HuggingChat
|
381 |
+
with st.spinner("🤖 Analyzing..."):
|
382 |
+
try:
|
383 |
+
response = chatbot.chat(hugging_prompt) # Corrected method to 'chat' instead of 'query'
|
384 |
+
ai_output = response # Extract AI response
|
385 |
+
# 🎭 **Show AI Response in a Stylish Chat Format**
|
386 |
+
with st.chat_message("assistant"):
|
387 |
+
st.markdown(f"**💡 AI Explanation:**\n\n{ai_output}")
|
388 |
+
except Exception as e:
|
389 |
+
st.error(f"⚠️ Error retrieving response: {e}")
|
390 |
+
st.stop()
|
391 |
+
|
392 |
+
# ✅ **Expand for SHAP Feature Details**
|
393 |
+
with st.expander("📜 Click to see detailed feature impacts"):
|
394 |
+
st.markdown(f"```{top_factors}```")
|
395 |
+
|
396 |
+
# Show Top 10 Features
|
397 |
+
#st.write(shap_df[["Feature", "SHAP Value"]]) # Display only relevant columns
|
398 |
+
|
399 |
+
# ✅ SHAP Bar Plot (Corrected for Top 10 Selection)
|
400 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
401 |
+
shap.bar_plot(shap_df["SHAP Value"].values, shap_df["Feature"].values) # Correct Top 10
|
402 |
+
st.pyplot(fig)
|
403 |
+
|
404 |
+
# 🎯 SHAP Force Plot (How Features Affected the Prediction)
|
405 |
+
st.subheader("🎯 SHAP Force Plot (How Features Affected the Prediction)")
|
406 |
+
|
407 |
+
# ✅ Fix: Use explainer.expected_value (single scalar)
|
408 |
+
force_plot = shap.force_plot(
|
409 |
+
explainer.expected_value, shap_values[0], feature_df.iloc[0], matplotlib=False
|
410 |
+
)
|
411 |
+
|
412 |
+
# ✅ Convert SHAP force plot to HTML
|
413 |
+
shap_html = f"<head>{shap.getjs()}</head><body>{force_plot.html()}</body>"
|
414 |
+
|
415 |
+
# ✅ Render SHAP force plot in Streamlit
|
416 |
+
components.html(shap_html, height=400)
|
417 |
+
|
418 |
+
elif page == "Clinical text notes":
|
419 |
+
# Set Streamlit Page Title
|
420 |
+
st.subheader("📝 Clinical Text Note")
|
421 |
+
|
422 |
+
# Utility Functions
|
423 |
+
|
424 |
+
def clean_text(text):
|
425 |
+
"""Cleans input text by removing non-ASCII characters, extra spaces, and unwanted symbols."""
|
426 |
+
text = re.sub(r"[^\x20-\x7E]", " ", text)
|
427 |
+
text = re.sub(r"_{2,}", "", text)
|
428 |
+
text = re.sub(r"\s+", " ", text)
|
429 |
+
text = re.sub(r"[^\w\s.,:;*%()\[\]-]", "", text)
|
430 |
+
return text.lower().strip()
|
431 |
+
|
432 |
+
|
433 |
+
import re
|
434 |
+
|
435 |
+
def extract_fields(text):
|
436 |
+
"""Extracts key fields from clinical notes using regex patterns."""
|
437 |
+
patterns = {
|
438 |
+
"Discharge Medications": r"Discharge Medications[:\-]?\s*(.+?)\s+(?:Discharge Disposition|Discharge Condition|Discharge Instructions|Followup Instructions|$)",
|
439 |
+
"Discharge Diagnosis": r"Discharge Diagnosis[:\-]?\s*(.+?)\s+(?:Discharge Condition|Discharge Medications|Discharge Instructions|Followup Instructions|$)",
|
440 |
+
"Discharge Instructions": r"Discharge Instructions[:\-]?\s*(.*?)\s+(?:Followup Instructions|Discharge Disposition|Discharge Condition|$)",
|
441 |
+
"History of Present Illness": r"History of Present Illness[:\-]?\s*(.+?)\s+(?:Past Medical History|Social History|Family History|Physical Exam|$)",
|
442 |
+
"Past Medical History": r"Past Medical History[:\-]?\s*(.+?)\s+(?:Social History|Family History|Physical Exam|$)"
|
443 |
+
}
|
444 |
+
|
445 |
+
extracted_data = {}
|
446 |
+
|
447 |
+
for field, pattern in patterns.items():
|
448 |
+
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
449 |
+
if match:
|
450 |
+
extracted_data[field] = match.group(1).strip()
|
451 |
+
|
452 |
+
return extracted_data
|
453 |
+
|
454 |
+
def extract_features(texts, model, tokenizer, device, batch_size=8):
|
455 |
+
"""Extracts CLS token embeddings from the Clinical-Longformer model."""
|
456 |
+
all_features = []
|
457 |
+
for i in range(0, len(texts), batch_size):
|
458 |
+
batch_texts = texts[i:i+batch_size]
|
459 |
+
inputs = tokenizer(batch_texts, return_tensors="pt", truncation=True, padding=True, max_length=4096).to(device)
|
460 |
+
global_attention_mask = torch.zeros_like(inputs["input_ids"]).to(device)
|
461 |
+
global_attention_mask[:, 0] = 1 # Set global attention for CLS token
|
462 |
+
|
463 |
+
with torch.no_grad():
|
464 |
+
outputs = model(**inputs, global_attention_mask=global_attention_mask)
|
465 |
+
|
466 |
+
all_features.append(outputs.last_hidden_state[:, 0, :])
|
467 |
+
|
468 |
+
return torch.cat(all_features, dim=0)
|
469 |
+
|
470 |
+
|
471 |
+
def extract_entities(text, pipe, entity_group):
|
472 |
+
"""Extracts specific entities from the clinical note using a NER pipeline."""
|
473 |
+
entities = pipe(text)
|
474 |
+
return [ent['word'] for ent in entities if ent['entity_group'] == entity_group] or ["No relevant entities found"]
|
475 |
+
|
476 |
+
# Load Model and Tokenizer
|
477 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
478 |
+
|
479 |
+
@st.cache_resource()
|
480 |
+
def load_models():
|
481 |
+
"""Loads transformer models for text processing and NER."""
|
482 |
+
longformer_tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer")
|
483 |
+
longformer_model = AutoModel.from_pretrained("yikuan8/Clinical-Longformer").to(device).eval()
|
484 |
+
|
485 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
486 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
487 |
+
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
|
488 |
+
|
489 |
+
return longformer_tokenizer, longformer_model, ner_pipe
|
490 |
+
|
491 |
+
longformer_tokenizer, longformer_model, ner_pipe = load_models()
|
492 |
+
|
493 |
+
# Text Input
|
494 |
+
clinical_note = st.text_area("✍️ Enter Clinical Note", placeholder="Write the clinical note here...")
|
495 |
+
|
496 |
+
if clinical_note:
|
497 |
+
cleaned_note = clean_text(clinical_note)
|
498 |
+
#st.write("### 📝 Cleaned Clinical Note:")
|
499 |
+
#st.write(cleaned_note)
|
500 |
+
|
501 |
+
# Extract Fields
|
502 |
+
extracted_data = extract_fields(cleaned_note)
|
503 |
+
st.write("### Extracted Fields")
|
504 |
+
st.write(extracted_data)
|
505 |
+
|
506 |
+
# Extract Embeddings
|
507 |
+
with st.spinner("🔍 Extracting embeddings..."):
|
508 |
+
embeddings = extract_features([cleaned_note], longformer_model, longformer_tokenizer, device)
|
509 |
+
#st.write("### Extracted Embeddings")
|
510 |
+
#st.write(embeddings)
|
511 |
+
# Definir a classe RobustMLPClassifier
|
512 |
+
class RobustMLPClassifier(nn.Module):
|
513 |
+
def __init__(self, input_dim, hidden_dims=[256, 128, 64], dropout=0.3, activation=nn.ReLU()):
|
514 |
+
super(RobustMLPClassifier, self).__init__()
|
515 |
+
layers = []
|
516 |
+
current_dim = input_dim
|
517 |
+
|
518 |
+
for h in hidden_dims:
|
519 |
+
layers.append(nn.Linear(current_dim, h))
|
520 |
+
layers.append(nn.BatchNorm1d(h))
|
521 |
+
layers.append(activation)
|
522 |
+
layers.append(nn.Dropout(dropout))
|
523 |
+
current_dim = h
|
524 |
+
|
525 |
+
layers.append(nn.Linear(current_dim, 1))
|
526 |
+
self.net = nn.Sequential(*layers)
|
527 |
+
|
528 |
+
def forward(self, x):
|
529 |
+
return self.net(x)
|
530 |
+
|
531 |
+
# --- Load MLP Model and PCA ---
|
532 |
+
mlp_model_path = "/Users/joaopimenta/Downloads/Capstone/best_mlp_model_full.pth"
|
533 |
+
pca_path = "/Users/joaopimenta/Downloads/Capstone/best_pca_model.pkl"
|
534 |
+
|
535 |
+
best_mlp_model = torch.load(mlp_model_path)
|
536 |
+
best_mlp_model.to(device)
|
537 |
+
best_mlp_model.eval()
|
538 |
+
|
539 |
+
pca = joblib.load(pca_path)
|
540 |
+
|
541 |
+
def predict_readmission(texts):
|
542 |
+
"""Predicts hospital readmission probability using Clinical-Longformer embeddings and MLP."""
|
543 |
+
embeddings = extract_features(texts, longformer_model, longformer_tokenizer, device)
|
544 |
+
embeddings_pca = pca.transform(embeddings.cpu().numpy()) # Apply PCA
|
545 |
+
|
546 |
+
inputs = torch.FloatTensor(embeddings_pca).to(device)
|
547 |
+
|
548 |
+
with torch.no_grad():
|
549 |
+
logits = best_mlp_model(inputs)
|
550 |
+
probabilities = torch.sigmoid(logits).cpu().numpy()
|
551 |
+
|
552 |
+
return probabilities
|
553 |
+
|
554 |
+
# Extract Medical Entities
|
555 |
+
with st.spinner("🔍 Identifying medical entities..."):
|
556 |
+
extracted_data["Extracted Medications"] = extract_entities(
|
557 |
+
extracted_data.get("Discharge Medications", ""), ner_pipe, "Medication"
|
558 |
+
)
|
559 |
+
|
560 |
+
extracted_data["Extracted Diseases"] = extract_entities(
|
561 |
+
extracted_data.get("Discharge Diagnosis", ""), ner_pipe, "Disease_disorder"
|
562 |
+
)
|
563 |
+
|
564 |
+
extracted_data["Extracted Diseases (Past Medical History)"] = extract_entities(
|
565 |
+
extracted_data.get("Past Medical History", ""), ner_pipe, "Disease_disorder"
|
566 |
+
)
|
567 |
+
|
568 |
+
extracted_data["Extracted Diseases (History of Present Illness)"] = extract_entities(
|
569 |
+
extracted_data.get("History of Present Illness", ""), ner_pipe, "Disease_disorder"
|
570 |
+
)
|
571 |
+
|
572 |
+
# Extração de sintomas agora inclui "History of Present Illness"
|
573 |
+
extracted_data["Extracted Symptoms"] = extract_entities(
|
574 |
+
extracted_data.get("Review of Systems", "") + " " + extracted_data.get("History of Present Illness", ""),
|
575 |
+
ner_pipe, "Sign_symptom"
|
576 |
+
)
|
577 |
+
|
578 |
+
|
579 |
+
def clean_entities(entities):
|
580 |
+
"""Reconstruct fragmented tokens and remove duplicates."""
|
581 |
+
cleaned = []
|
582 |
+
temp = ""
|
583 |
+
|
584 |
+
for entity in entities:
|
585 |
+
if entity.startswith("##"): # Fragmented token
|
586 |
+
temp += entity.replace("##", "")
|
587 |
+
else:
|
588 |
+
if temp:
|
589 |
+
cleaned.append(temp) # Add the reconstructed token
|
590 |
+
temp = entity
|
591 |
+
if temp:
|
592 |
+
cleaned.append(temp) # Add the last processed token
|
593 |
+
|
594 |
+
# Filter out irrelevant short words and special characters
|
595 |
+
cleaned = [word for word in cleaned if len(word) > 2 and not re.match(r"^[\W_]+$", word)]
|
596 |
+
|
597 |
+
return sorted(set(cleaned)) # Remove duplicates and sort
|
598 |
+
|
599 |
+
# Clean extracted diseases and symptoms
|
600 |
+
diseases_cleaned = clean_entities(
|
601 |
+
extracted_data.get("Extracted Diseases", []) +
|
602 |
+
extracted_data.get("Extracted Diseases (Past Medical History)", []) +
|
603 |
+
extracted_data.get("Extracted Diseases (History of Present Illness)", [])
|
604 |
+
)
|
605 |
+
# Clean and reconstruct medication names
|
606 |
+
medications_cleaned = clean_entities(extracted_data.get("Extracted Medications", []))
|
607 |
+
|
608 |
+
# Store cleaned data in the main dictionary
|
609 |
+
extracted_data["Extracted Medications Cleaned"] = medications_cleaned
|
610 |
+
|
611 |
+
symptoms_cleaned = clean_entities(extracted_data.get("Extracted Symptoms", []))
|
612 |
+
|
613 |
+
# Display extracted entities
|
614 |
+
def display_list(title, items, icon="📌"):
|
615 |
+
"""Display extracted medical entities in an expandable list."""
|
616 |
+
with st.expander(f"**{title} ({len(items)})**"):
|
617 |
+
if items:
|
618 |
+
for item in items:
|
619 |
+
st.markdown(f"- {icon} **{item}**")
|
620 |
+
else:
|
621 |
+
st.markdown("_No information available._")
|
622 |
+
|
623 |
+
|
624 |
+
# Layout Header
|
625 |
+
st.markdown("## 🏥 **Patient Medical Analysis**")
|
626 |
+
st.markdown("---")
|
627 |
+
|
628 |
+
# Creating columns for metrics
|
629 |
+
col1, col2, col3 = st.columns(3)
|
630 |
+
|
631 |
+
# Medications Metrics
|
632 |
+
num_medications = len(medications_cleaned )
|
633 |
+
col1.metric(label="💊 Total Medications", value=num_medications)
|
634 |
+
|
635 |
+
# Diseases Metrics
|
636 |
+
num_diseases = len(diseases_cleaned)
|
637 |
+
col2.metric(label="🦠 Total Diseases", value=num_diseases)
|
638 |
+
|
639 |
+
# Symptoms Metrics
|
640 |
+
num_symptoms = len(symptoms_cleaned)
|
641 |
+
col3.metric(label="🤒 Total Symptoms", value=num_symptoms)
|
642 |
+
|
643 |
+
st.markdown("---")
|
644 |
+
|
645 |
+
# Organizing lists in two columns
|
646 |
+
col1, col2 = st.columns(2)
|
647 |
+
|
648 |
+
# Display Medications List
|
649 |
+
with col1:
|
650 |
+
st.markdown("### 💊 **Medications**")
|
651 |
+
display_list("Medication List", medications_cleaned , icon="💊")
|
652 |
+
|
653 |
+
# Display Diseases List
|
654 |
+
with col2:
|
655 |
+
st.markdown("### 🦠 **Diseases**")
|
656 |
+
display_list("Disease List", diseases_cleaned, icon="🦠")
|
657 |
+
|
658 |
+
# Symptoms Section
|
659 |
+
st.markdown("### 🤒 **Symptoms**")
|
660 |
+
display_list("Symptoms List", symptoms_cleaned, icon="🤒")
|
661 |
+
|
662 |
+
st.markdown("---")
|
663 |
+
|
664 |
+
# Load tokenizer
|
665 |
+
tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer")
|
666 |
+
|
667 |
+
# Functions for token count and truncation
|
668 |
+
def count_tokens(text):
|
669 |
+
tokens = tokenizer.tokenize(text)
|
670 |
+
return len(tokens)
|
671 |
+
|
672 |
+
def trunced_text(nr):
|
673 |
+
return 1 if nr > 4096 else 0
|
674 |
+
|
675 |
+
# Dictionary of diseases with synonyms (matching capitalization in the image)
|
676 |
+
disease_synonyms = {
|
677 |
+
"Pneumonia": ["pneumonia", "pneumonitis"],
|
678 |
+
"Diabetes": ["diabetes", "diabetes mellitus", "dm"],
|
679 |
+
"CHF": ["CHF", "congestive heart failure", "heart failure"],
|
680 |
+
"Septicemia": ["septicemia", "sepsis", "blood infection"],
|
681 |
+
"Cirrhosis": ["cirrhosis", "liver cirrhosis", "hepatic cirrhosis"],
|
682 |
+
"COPD": ["COPD", "chronic obstructive pulmonary disease"],
|
683 |
+
"Renal_Failure": ["renal failure", "kidney failure", "chronic kidney disease", "CKD"]
|
684 |
+
}
|
685 |
+
|
686 |
+
# Extract relevant fields (assuming extract_fields is defined elsewhere)
|
687 |
+
extracted_data = extract_fields(clinical_note)
|
688 |
+
|
689 |
+
# Compute token counts
|
690 |
+
number_of_tokens = count_tokens(clinical_note)
|
691 |
+
number_of_tokens_med = count_tokens(extracted_data.get("Discharge Medications", ""))
|
692 |
+
number_of_tokens_dis = count_tokens(extracted_data.get("Discharge Diagnosis", ""))
|
693 |
+
trunced = trunced_text(number_of_tokens)
|
694 |
+
|
695 |
+
# Convert diagnosis text to lowercase for case-insensitive matching
|
696 |
+
full_diagnosis_text = extracted_data.get("Discharge Diagnosis", "").lower()
|
697 |
+
|
698 |
+
# Function to check for any synonym in the diagnosis text
|
699 |
+
def check_disease_presence(disease_list, text):
|
700 |
+
return int(any(re.search(rf"\b{synonym}\b", text, re.IGNORECASE) for synonym in disease_list))
|
701 |
+
|
702 |
+
# Create binary columns for each disease based on synonyms
|
703 |
+
disease_flags = {disease: check_disease_presence(synonyms, full_diagnosis_text)
|
704 |
+
for disease, synonyms in disease_synonyms.items()}
|
705 |
+
|
706 |
+
# Count total diseases found
|
707 |
+
disease_flags["total_conditions"] = sum(disease_flags.values())
|
708 |
+
|
709 |
+
# Create DataFrame with a single row (matching column names from the image)
|
710 |
+
df = pd.DataFrame([{
|
711 |
+
'number_of_tokens_dis': number_of_tokens_dis,
|
712 |
+
'number_of_tokens': number_of_tokens,
|
713 |
+
'number_of_tokens_med': number_of_tokens_med,
|
714 |
+
'diagnostic_count': num_diseases, # Ensuring column name matches
|
715 |
+
'total_conditions': disease_flags["total_conditions"], # Matching name
|
716 |
+
'trunced': trunced,
|
717 |
+
**{disease: disease_flags[disease] for disease in disease_synonyms.keys()} # Disease presence flags
|
718 |
+
}])
|
719 |
+
|
720 |
+
# Display DataFrame
|
721 |
+
#st.write(df)
|
722 |
+
|
723 |
+
#load lighGBoost model
|
724 |
+
light_path = '/Users/joaopimenta/Downloads/best_lgbm_model.pkl'
|
725 |
+
light_model = joblib.load(light_path)
|
726 |
+
#st.write("LightGBoost Model loaded sucessfully!")
|
727 |
+
|
728 |
+
# Ensure df is already created from previous steps
|
729 |
+
# Select only the columns that match the model input
|
730 |
+
model_features = light_model.feature_name_
|
731 |
+
|
732 |
+
# Check if all required features are in df
|
733 |
+
missing_features = [feat for feat in model_features if feat not in df.columns]
|
734 |
+
if missing_features:
|
735 |
+
st.write(f"⚠️ Warning: Missing features in df: {missing_features}")
|
736 |
+
|
737 |
+
# Fill missing columns with 0 (if needed, assuming binary features)
|
738 |
+
for feat in missing_features:
|
739 |
+
df[feat] = 0 # Default to 0 for missing binary disease indicators
|
740 |
+
|
741 |
+
# Reorder df to match model features exactly
|
742 |
+
df = df[model_features]
|
743 |
+
|
744 |
+
# Convert df to NumPy array for LightGBM prediction
|
745 |
+
X = df.to_numpy()
|
746 |
+
|
747 |
+
# Make prediction
|
748 |
+
# Get probability of readmission
|
749 |
+
light_probability = light_model.predict_proba(X)[:, 1] # Get probability for class 1 (readmission)
|
750 |
+
# Armazenar no session_state
|
751 |
+
st.session_state["lightgbm probability"] = light_probability
|
752 |
+
|
753 |
+
# Output results
|
754 |
+
#st.write(f"🔹 Readmission Prediction: {probability}")
|
755 |
+
|
756 |
+
# Prediction Button
|
757 |
+
if st.button("🚀 Predict Readmission"):
|
758 |
+
with st.spinner("🔍 Extracting embeddings and predicting readmission..."):
|
759 |
+
readmission_prob = predict_readmission([cleaned_note])[0][0] # Compute only once
|
760 |
+
st.session_state["MLP probability"] = readmission_prob
|
761 |
+
prediction = 1 if readmission_prob > 0.5 else 0 # Define prediction value
|
762 |
+
|
763 |
+
# Display Results
|
764 |
+
st.subheader("🎯 Prediction Results")
|
765 |
+
col1, col2 = st.columns(2)
|
766 |
+
|
767 |
+
with col1:
|
768 |
+
st.metric(label="🧮 Readmission Probability", value=f"{readmission_prob:.2%}")
|
769 |
+
|
770 |
+
with col2:
|
771 |
+
if prediction == 1:
|
772 |
+
st.error("⚠️ High Risk of Readmission")
|
773 |
+
else:
|
774 |
+
st.success("✅ Low Risk of Readmission")
|
775 |
+
|
776 |
+
# Display Readmission Probability with Centered Styling
|
777 |
+
st.markdown(f"""
|
778 |
+
<div style="text-align:center; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
|
779 |
+
<h3>📊 Readmission Probability</h3>
|
780 |
+
<h2 style="color: {'red' if readmission_prob > 0.5 else 'green'};">{readmission_prob:.2%}</h2>
|
781 |
+
</div>
|
782 |
+
""", unsafe_allow_html=True)
|
783 |
+
|
784 |
+
elif page == "Ensemble prediction":
|
785 |
+
|
786 |
+
# Load the ensemble model
|
787 |
+
ensemble_model = joblib.load("/Users/joaopimenta/Downloads/best_ensemble_model.pkl")
|
788 |
+
#st.write("✅ Ensemble Model loaded successfully!")
|
789 |
+
|
790 |
+
# Define models
|
791 |
+
models = ["XGBoost", "lightgbm", "MLP"]
|
792 |
+
|
793 |
+
# Retrieve stored probabilities from session state and ensure they are numeric
|
794 |
+
probabilities = []
|
795 |
+
for model in models:
|
796 |
+
key = f"{model} probability"
|
797 |
+
if key in st.session_state:
|
798 |
+
try:
|
799 |
+
prob = float(st.session_state[key])
|
800 |
+
probabilities.append(prob)
|
801 |
+
except ValueError:
|
802 |
+
st.error(f"⚠️ Invalid probability value for {model}: {st.session_state[key]}")
|
803 |
+
probabilities.append(None)
|
804 |
+
else:
|
805 |
+
probabilities.append(None)
|
806 |
+
|
807 |
+
# Ensure all probabilities are valid before proceeding
|
808 |
+
if None not in probabilities:
|
809 |
+
st.write("### 🗳️ Voting Process in Progress...")
|
810 |
+
|
811 |
+
progress_bar = st.progress(0) # Progress bar
|
812 |
+
voting_display = st.empty() # Placeholder for voting animation
|
813 |
+
|
814 |
+
votes = []
|
815 |
+
for i, (model, prob) in enumerate(zip(models, probabilities)):
|
816 |
+
time.sleep(1) # Simulate suspense
|
817 |
+
|
818 |
+
# Simulated blinking effect
|
819 |
+
for _ in range(3):
|
820 |
+
voting_display.markdown(f"⏳ {model} is deciding...")
|
821 |
+
time.sleep(0.5)
|
822 |
+
voting_display.markdown("")
|
823 |
+
time.sleep(0.5)
|
824 |
+
|
825 |
+
# Convert probability to label
|
826 |
+
if prob < 0.33:
|
827 |
+
vote = "🟢 Low"
|
828 |
+
elif prob < 0.46:
|
829 |
+
vote = "🟡 Medium"
|
830 |
+
else:
|
831 |
+
vote = "🔴 High"
|
832 |
+
|
833 |
+
votes.append(vote)
|
834 |
+
voting_display.markdown(f"✅ **{model} voted: {vote}**")
|
835 |
+
progress_bar.progress((i + 1) / len(models))
|
836 |
+
|
837 |
+
time.sleep(1)
|
838 |
+
progress_bar.empty()
|
839 |
+
|
840 |
+
# Create a DataFrame with numeric probabilities
|
841 |
+
final_df = pd.DataFrame([probabilities], columns=['probs', 'probs_lgb', 'probs_mlp'])
|
842 |
+
final_df = final_df.astype(float) # Ensure all values are float
|
843 |
+
|
844 |
+
# Fazer a predição final com o ensemble
|
845 |
+
final_probability = ensemble_model.predict_proba(final_df)[:, 1][0] # Probabilidade de classe 1
|
846 |
+
final_prediction = 1 if final_probability >= 0.25 else 0 # Aplicando threshold de 0.25
|
847 |
+
|
848 |
+
# Estilização do resultado final
|
849 |
+
st.markdown("---")
|
850 |
+
if final_prediction == 1:
|
851 |
+
st.markdown(f"""
|
852 |
+
<div style="text-align: center; background-color: #ffdddd; padding: 15px; border-radius: 10px;">
|
853 |
+
<h2>🚨 <b>Final Prediction: 1</b> (Readmission Likely) </h2>
|
854 |
+
<h3>🔍 Probability: {final_probability:.2f} (Threshold: 0.25)</h3>
|
855 |
+
</div>
|
856 |
+
""", unsafe_allow_html=True)
|
857 |
+
else:
|
858 |
+
st.markdown(f"""
|
859 |
+
<div style="text-align: center; background-color: #ddffdd; padding: 15px; border-radius: 10px;">
|
860 |
+
<h2>✅ <b>Final Prediction: 0</b> (No Readmission Risk) </h2>
|
861 |
+
<h3>🔍 Probability: {final_probability:.2f} (Threshold: 0.25)</h3>
|
862 |
+
</div>
|
863 |
+
""", unsafe_allow_html=True)
|
864 |
+
|
865 |
+
# 🎨 **Weight Visualization: How Much Each Model Contributed**
|
866 |
+
st.write("### ⚖️ Model Contribution to Final Decision")
|
867 |
+
fig, ax = plt.subplots()
|
868 |
+
ax.bar(models, probabilities, color=["blue", "green", "red"])
|
869 |
+
ax.set_ylabel("Probability")
|
870 |
+
ax.set_title("Model Prediction Probabilities")
|
871 |
+
st.pyplot(fig)
|
872 |
+
|
873 |
+
# Show detailed voting breakdown
|
874 |
+
st.write("### 📊 Voting Breakdown:")
|
875 |
+
for model, vote in zip(models, votes):
|
876 |
+
st.write(f"🔹 {model}: **{vote}** (Prob: {probabilities[models.index(model)]:.2f})")
|
877 |
+
|
878 |
+
else:
|
879 |
+
st.warning("⚠️ Some model predictions are missing. Please run all models before voting.")
|