Spaces:
Paused
Paused
two files
Browse files- app.py +1 -152
- medusa_training.py +152 -0
app.py
CHANGED
@@ -1,15 +1,7 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import multiprocessing as mp
|
4 |
-
|
5 |
from git import Repo
|
6 |
import gradio as gr
|
7 |
-
from huggingface_hub import HfApi
|
8 |
-
from huggingface_hub.utils import RepositoryNotFoundError
|
9 |
-
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
10 |
-
import torch
|
11 |
-
import torch.distributed.run as distributed_run
|
12 |
|
|
|
13 |
|
14 |
# Clone the medusa repo locally
|
15 |
print("Cloning the medusa repo locally...")
|
@@ -18,149 +10,6 @@ print("Cloning the vicuna data locally...")
|
|
18 |
Repo.clone_from("https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered", "data")
|
19 |
print("Done")
|
20 |
|
21 |
-
OUTPUT_DIR = "medusa_heads"
|
22 |
-
MEDUSA_NUM_HEADS = 3
|
23 |
-
MEDUSA_NUM_LAYERS = 1
|
24 |
-
LR = 1e-3
|
25 |
-
|
26 |
-
DATASET = "vicuna"
|
27 |
-
|
28 |
-
# These can't be changed (e.g. they control the output path)
|
29 |
-
FIXED_TRAINING_ARGS = \
|
30 |
-
"""medusa/medusa/train/train.py
|
31 |
-
--model_name_or_path {model_id}
|
32 |
-
--output_dir {output_dir}
|
33 |
-
--run_name {model_id}-medusa-{dataset}
|
34 |
-
--medusa_num_heads {medusa_num_heads}
|
35 |
-
--medusa_num_layers {medusa_num_layers}
|
36 |
-
--learning_rate {lr}
|
37 |
-
--data_path data/ShareGPT_V4.3_unfiltered_cleaned_split.json"""
|
38 |
-
|
39 |
-
# These can be freely changed
|
40 |
-
DEFAULT_TRAINING_ARGS = \
|
41 |
-
"""--bf16 True
|
42 |
-
--num_train_epochs 1
|
43 |
-
--per_device_train_batch_size 64
|
44 |
-
--per_device_eval_batch_size 64
|
45 |
-
--gradient_accumulation_steps 4
|
46 |
-
--evaluation_strategy no
|
47 |
-
--save_strategy no
|
48 |
-
--weight_decay 0.0
|
49 |
-
--warmup_ratio 0.1
|
50 |
-
--lr_scheduler_type cosine
|
51 |
-
--logging_steps 10
|
52 |
-
--tf32 True
|
53 |
-
--model_max_length 2048
|
54 |
-
--lazy_preprocess True
|
55 |
-
--auto_find_batch_size True"""
|
56 |
-
|
57 |
-
|
58 |
-
def train_medusa_heads(model_id: str, training_args: str):
|
59 |
-
all_training_args = FIXED_TRAINING_ARGS.format(
|
60 |
-
model_id=model_id,
|
61 |
-
output_dir=OUTPUT_DIR,
|
62 |
-
dataset=DATASET,
|
63 |
-
medusa_num_heads=MEDUSA_NUM_HEADS,
|
64 |
-
lr=LR,
|
65 |
-
medusa_num_layers=MEDUSA_NUM_LAYERS
|
66 |
-
) + "\n" + training_args
|
67 |
-
all_training_arg_list = []
|
68 |
-
for arg in all_training_args.split("\n"):
|
69 |
-
all_training_arg_list += arg.split(" ")
|
70 |
-
print("Full argument list:", all_training_arg_list)
|
71 |
-
|
72 |
-
parser = distributed_run.get_args_parser()
|
73 |
-
args = parser.parse_args(all_training_arg_list)
|
74 |
-
distributed_run.run(args)
|
75 |
-
|
76 |
-
|
77 |
-
def run(model_id: str, training_args: str) -> str:
|
78 |
-
print(f"\n\n\nNEW RUN: {model_id}")
|
79 |
-
api = HfApi()
|
80 |
-
model_name = model_id.split("/")[-1]
|
81 |
-
repo_id = f"joaogante/{model_name}-medusa-{DATASET}"
|
82 |
-
|
83 |
-
# Input validation
|
84 |
-
if model_id == "":
|
85 |
-
return """
|
86 |
-
### Invalid input π
|
87 |
-
|
88 |
-
Please fill a model_id.
|
89 |
-
"""
|
90 |
-
if api.repo_exists(repo_id):
|
91 |
-
return f"""
|
92 |
-
### Invalid input π
|
93 |
-
|
94 |
-
{repo_id} already exists, which means that {model_id} has already been used to create medusa heads.
|
95 |
-
"""
|
96 |
-
print(f"Valid inputs β
\nValidating model_id: {model_id}")
|
97 |
-
|
98 |
-
# Attempt to load the base model
|
99 |
-
try:
|
100 |
-
config = AutoConfig.from_pretrained(model_id)
|
101 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
102 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
103 |
-
del config, tokenizer, model
|
104 |
-
except Exception as e:
|
105 |
-
return f"""
|
106 |
-
### {model_id} can't be loaded with AutoClasses π
|
107 |
-
|
108 |
-
{e}
|
109 |
-
"""
|
110 |
-
print(f"{model_id} can be loaded β
\nCreating medusa heads (will take a few hours)")
|
111 |
-
|
112 |
-
# Run the medusa heads creation
|
113 |
-
try:
|
114 |
-
proc = mp.Process(target=train_medusa_heads, args=(model_id, training_args))
|
115 |
-
proc.start()
|
116 |
-
proc.join()
|
117 |
-
print("Medusa heads training process completed (it might have crashed!)")
|
118 |
-
except Exception as e:
|
119 |
-
print("Error β\n", e)
|
120 |
-
return f"""
|
121 |
-
### Error π’π’π’
|
122 |
-
|
123 |
-
{e}
|
124 |
-
"""
|
125 |
-
|
126 |
-
# Upload the medusa heads to the Hub
|
127 |
-
try:
|
128 |
-
# Folder path from https://github.com/FasterDecoding/Medusa/blob/main/medusa/train/train.py#L399
|
129 |
-
folder_path = (
|
130 |
-
f"{OUTPUT_DIR}_medusa_mlp_{model_name}_medusa_{MEDUSA_NUM_HEADS}_lr_{LR}_layers_{MEDUSA_NUM_LAYERS}"
|
131 |
-
)
|
132 |
-
if not any([x for x in os.listdir(folder_path) if len(x) >= 3 and x[-3:] == ".pt"]):
|
133 |
-
raise Exception(
|
134 |
-
"No model data in the expected model folder, the traning run probably failed. Check the logs for more "
|
135 |
-
"information."
|
136 |
-
)
|
137 |
-
|
138 |
-
api.create_repo(
|
139 |
-
repo_id=repo_id,
|
140 |
-
exist_ok=True,
|
141 |
-
)
|
142 |
-
api.upload_folder(
|
143 |
-
folder_path=folder_path,
|
144 |
-
repo_id=repo_id,
|
145 |
-
)
|
146 |
-
print("Medusa heads upload success β
\n Uploaded to: ", repo_id)
|
147 |
-
return f"""
|
148 |
-
### Success π₯
|
149 |
-
|
150 |
-
Yay! Medusa heads were successfully created and uploaded to the following repo: {repo_id}
|
151 |
-
"""
|
152 |
-
except Exception as e:
|
153 |
-
print("Error β\n", e)
|
154 |
-
try:
|
155 |
-
api.delete_repo(repo_id)
|
156 |
-
except RepositoryNotFoundError:
|
157 |
-
pass
|
158 |
-
return f"""
|
159 |
-
### Error π’π’π’
|
160 |
-
|
161 |
-
{e}
|
162 |
-
"""
|
163 |
-
|
164 |
|
165 |
DESCRIPTION = """
|
166 |
The steps to create [medusa](https://sites.google.com/view/medusa-llm) heads are the following:
|
|
|
|
|
|
|
|
|
|
|
1 |
from git import Repo
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from medusa_training import run, DEFAULT_TRAINING_ARGS
|
5 |
|
6 |
# Clone the medusa repo locally
|
7 |
print("Cloning the medusa repo locally...")
|
|
|
10 |
Repo.clone_from("https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered", "data")
|
11 |
print("Done")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
DESCRIPTION = """
|
15 |
The steps to create [medusa](https://sites.google.com/view/medusa-llm) heads are the following:
|
medusa_training.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import multiprocessing as mp
|
4 |
+
|
5 |
+
from huggingface_hub import HfApi
|
6 |
+
from huggingface_hub.utils import RepositoryNotFoundError
|
7 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
8 |
+
import torch
|
9 |
+
import torch.distributed.run as distributed_run
|
10 |
+
|
11 |
+
OUTPUT_DIR = "medusa_heads"
|
12 |
+
MEDUSA_NUM_HEADS = 3
|
13 |
+
MEDUSA_NUM_LAYERS = 1
|
14 |
+
LR = 1e-3
|
15 |
+
|
16 |
+
DATASET = "vicuna"
|
17 |
+
|
18 |
+
# These can't be changed (e.g. they control the output path)
|
19 |
+
FIXED_TRAINING_ARGS = \
|
20 |
+
"""medusa/medusa/train/train.py
|
21 |
+
--model_name_or_path {model_id}
|
22 |
+
--output_dir {output_dir}
|
23 |
+
--run_name {model_id}-medusa-{dataset}
|
24 |
+
--medusa_num_heads {medusa_num_heads}
|
25 |
+
--medusa_num_layers {medusa_num_layers}
|
26 |
+
--learning_rate {lr}
|
27 |
+
--data_path data/ShareGPT_V4.3_unfiltered_cleaned_split.json"""
|
28 |
+
|
29 |
+
# These can be freely changed
|
30 |
+
DEFAULT_TRAINING_ARGS = \
|
31 |
+
"""--bf16 True
|
32 |
+
--num_train_epochs 1
|
33 |
+
--per_device_train_batch_size 64
|
34 |
+
--per_device_eval_batch_size 64
|
35 |
+
--gradient_accumulation_steps 4
|
36 |
+
--evaluation_strategy no
|
37 |
+
--save_strategy no
|
38 |
+
--weight_decay 0.0
|
39 |
+
--warmup_ratio 0.1
|
40 |
+
--lr_scheduler_type cosine
|
41 |
+
--logging_steps 10
|
42 |
+
--tf32 True
|
43 |
+
--model_max_length 2048
|
44 |
+
--lazy_preprocess True
|
45 |
+
--auto_find_batch_size True"""
|
46 |
+
|
47 |
+
|
48 |
+
def train_medusa_heads(model_id: str, training_args: str):
|
49 |
+
all_training_args = FIXED_TRAINING_ARGS.format(
|
50 |
+
model_id=model_id,
|
51 |
+
output_dir=OUTPUT_DIR,
|
52 |
+
dataset=DATASET,
|
53 |
+
medusa_num_heads=MEDUSA_NUM_HEADS,
|
54 |
+
lr=LR,
|
55 |
+
medusa_num_layers=MEDUSA_NUM_LAYERS
|
56 |
+
) + "\n" + training_args
|
57 |
+
all_training_arg_list = []
|
58 |
+
for arg in all_training_args.split("\n"):
|
59 |
+
all_training_arg_list += arg.split(" ")
|
60 |
+
print("Full argument list:", all_training_arg_list)
|
61 |
+
|
62 |
+
parser = distributed_run.get_args_parser()
|
63 |
+
args = parser.parse_args(all_training_arg_list)
|
64 |
+
distributed_run.run(args)
|
65 |
+
|
66 |
+
|
67 |
+
def run(model_id: str, training_args: str) -> str:
|
68 |
+
print(f"\n\n\nNEW RUN: {model_id}")
|
69 |
+
api = HfApi()
|
70 |
+
model_name = model_id.split("/")[-1]
|
71 |
+
repo_id = f"joaogante/{model_name}-medusa-{DATASET}"
|
72 |
+
|
73 |
+
# Input validation
|
74 |
+
if model_id == "":
|
75 |
+
return """
|
76 |
+
### Invalid input π
|
77 |
+
|
78 |
+
Please fill a model_id.
|
79 |
+
"""
|
80 |
+
if api.repo_exists(repo_id):
|
81 |
+
return f"""
|
82 |
+
### Invalid input π
|
83 |
+
|
84 |
+
{repo_id} already exists, which means that {model_id} has already been used to create medusa heads.
|
85 |
+
"""
|
86 |
+
print(f"Valid inputs β
\nValidating model_id: {model_id}")
|
87 |
+
|
88 |
+
# Attempt to load the base model
|
89 |
+
try:
|
90 |
+
config = AutoConfig.from_pretrained(model_id)
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
92 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
93 |
+
del config, tokenizer, model
|
94 |
+
except Exception as e:
|
95 |
+
return f"""
|
96 |
+
### {model_id} can't be loaded with AutoClasses π
|
97 |
+
|
98 |
+
{e}
|
99 |
+
"""
|
100 |
+
print(f"{model_id} can be loaded β
\nCreating medusa heads (will take a few hours)")
|
101 |
+
|
102 |
+
# Run the medusa heads creation
|
103 |
+
try:
|
104 |
+
proc = mp.Process(target=train_medusa_heads, args=(model_id, training_args))
|
105 |
+
proc.start()
|
106 |
+
proc.join()
|
107 |
+
print("Medusa heads training process completed (it might have crashed!)")
|
108 |
+
except Exception as e:
|
109 |
+
print("Error β\n", e)
|
110 |
+
return f"""
|
111 |
+
### Error π’π’π’
|
112 |
+
|
113 |
+
{e}
|
114 |
+
"""
|
115 |
+
|
116 |
+
# Upload the medusa heads to the Hub
|
117 |
+
try:
|
118 |
+
# Folder path from https://github.com/FasterDecoding/Medusa/blob/main/medusa/train/train.py#L399
|
119 |
+
folder_path = (
|
120 |
+
f"{OUTPUT_DIR}_medusa_mlp_{model_name}_medusa_{MEDUSA_NUM_HEADS}_lr_{LR}_layers_{MEDUSA_NUM_LAYERS}"
|
121 |
+
)
|
122 |
+
if not any([x for x in os.listdir(folder_path) if len(x) >= 3 and x[-3:] == ".pt"]):
|
123 |
+
raise Exception(
|
124 |
+
"No model data in the expected model folder, the traning run probably failed. Check the logs for more "
|
125 |
+
"information."
|
126 |
+
)
|
127 |
+
|
128 |
+
api.create_repo(
|
129 |
+
repo_id=repo_id,
|
130 |
+
exist_ok=True,
|
131 |
+
)
|
132 |
+
api.upload_folder(
|
133 |
+
folder_path=folder_path,
|
134 |
+
repo_id=repo_id,
|
135 |
+
)
|
136 |
+
print("Medusa heads upload success β
\n Uploaded to: ", repo_id)
|
137 |
+
return f"""
|
138 |
+
### Success π₯
|
139 |
+
|
140 |
+
Yay! Medusa heads were successfully created and uploaded to the following repo: {repo_id}
|
141 |
+
"""
|
142 |
+
except Exception as e:
|
143 |
+
print("Error β\n", e)
|
144 |
+
try:
|
145 |
+
api.delete_repo(repo_id)
|
146 |
+
except RepositoryNotFoundError:
|
147 |
+
pass
|
148 |
+
return f"""
|
149 |
+
### Error π’π’π’
|
150 |
+
|
151 |
+
{e}
|
152 |
+
"""
|