get spaces back
Browse files
app.py
CHANGED
@@ -41,13 +41,15 @@ if __name__ == "__main__":
|
|
41 |
transition_proba = np.exp(transition_scores)
|
42 |
# We only have scores for the generated tokens, so pop out the prompt tokens
|
43 |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
|
44 |
-
|
|
|
45 |
|
46 |
# On decoder-only models, you might want to initialize the highlighted output with the prompt (wo labels)
|
47 |
if model.config.is_encoder_decoder:
|
48 |
highlighted_out = []
|
49 |
else:
|
50 |
-
|
|
|
51 |
# Get the (decoded_token, label) pairs for the generated tokens
|
52 |
for token, proba in zip(generated_tokens[0], transition_proba[0]):
|
53 |
this_label = None
|
@@ -56,7 +58,7 @@ if __name__ == "__main__":
|
|
56 |
if proba >= min_proba:
|
57 |
this_label = label
|
58 |
break
|
59 |
-
highlighted_out.append((
|
60 |
|
61 |
return highlighted_out
|
62 |
|
|
|
41 |
transition_proba = np.exp(transition_scores)
|
42 |
# We only have scores for the generated tokens, so pop out the prompt tokens
|
43 |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
|
44 |
+
generated_ids = outputs.sequences[:, input_length:]
|
45 |
+
generated_tokens = tokenizer.convert_ids_to_tokens(generated_ids[0])
|
46 |
|
47 |
# On decoder-only models, you might want to initialize the highlighted output with the prompt (wo labels)
|
48 |
if model.config.is_encoder_decoder:
|
49 |
highlighted_out = []
|
50 |
else:
|
51 |
+
input_tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids)
|
52 |
+
highlighted_out = [(token.replace("_", " "), None) for token in input_tokens]
|
53 |
# Get the (decoded_token, label) pairs for the generated tokens
|
54 |
for token, proba in zip(generated_tokens[0], transition_proba[0]):
|
55 |
this_label = None
|
|
|
58 |
if proba >= min_proba:
|
59 |
this_label = label
|
60 |
break
|
61 |
+
highlighted_out.append((token.replace("_", " "), this_label))
|
62 |
|
63 |
return highlighted_out
|
64 |
|