from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModel | |
from sklearn.ensemble import IsolationForest | |
from tqdm import tqdm | |
import torch | |
import gradio as gr | |
import numpy as np | |
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-base-portuguese-cased") | |
model = AutoModel.from_pretrained("neuralmind/bert-base-portuguese-cased") | |
model.eval() | |
data = np.load("x_train.npy") | |
iso_forest = IsolationForest(contamination=0.15, random_state=42) | |
iso_forest.fit(data) | |
def classify_email(text): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=256) | |
outputs = model(**inputs) | |
cls_embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy() | |
pred = iso_forest.predict(cls_embedding)[0] | |
return pred | |
demo = gr.Interface(fn=classify_email, inputs="text", outputs="number") | |
demo.launch() | |