Spaces:
Runtime error
Runtime error
| # Import Gradio Library | |
| import gradio as gr | |
| # Getting Pipelines | |
| from transformers import pipeline | |
| # Setting the pipeline model for Speech Recognition | |
| trans = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish") | |
| # Pipeline's Classifier for Text Classification | |
| classifier = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis") | |
| # Function's definition | |
| def audio_to_text(audio): | |
| text = trans(audio)["text"] | |
| return text | |
| def text_to_sentiment(text): | |
| return classifier(text)[0]["label"] | |
| # Setting Block | |
| demo = gr.Blocks() | |
| with demo: | |
| # Documnetation | |
| gr.Markdown("Spanish Sentiment-Demo") | |
| # Receiving Audio | |
| audio = gr.Audio(source="microphone", type="filepath") | |
| # Text Box | |
| text = gr.Textbox() | |
| # Button's Set-up Box | |
| b1 = gr.Button("Please, transcribe..!: ") | |
| # Procedure | |
| b1.click(audio_to_text, inputs=audio, outputs=text) | |
| # Labels | |
| label = gr.Label() | |
| # Sentiment classifier | |
| b2 = gr.Button("Please! Classiffy the sentiment: ") | |
| # Invoke text to sentiment as text and return a label | |
| b2.click(text_to_sentiment, inputs=text, outputs=label) | |
| demo.launch() |