Upload 7 files
Browse files- execution.py +371 -0
- extra_model_paths.yaml.example +23 -0
- folder_paths.py +69 -0
- main.py +162 -0
- nodes.py +1115 -0
- requirements.txt +11 -0
- server.py +294 -0
execution.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import copy
|
4 |
+
import json
|
5 |
+
import threading
|
6 |
+
import heapq
|
7 |
+
import traceback
|
8 |
+
import gc
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import nodes
|
12 |
+
|
13 |
+
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}):
|
14 |
+
valid_inputs = class_def.INPUT_TYPES()
|
15 |
+
input_data_all = {}
|
16 |
+
for x in inputs:
|
17 |
+
input_data = inputs[x]
|
18 |
+
if isinstance(input_data, list):
|
19 |
+
input_unique_id = input_data[0]
|
20 |
+
output_index = input_data[1]
|
21 |
+
if input_unique_id not in outputs:
|
22 |
+
return None
|
23 |
+
obj = outputs[input_unique_id][output_index]
|
24 |
+
input_data_all[x] = obj
|
25 |
+
else:
|
26 |
+
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
|
27 |
+
input_data_all[x] = input_data
|
28 |
+
|
29 |
+
if "hidden" in valid_inputs:
|
30 |
+
h = valid_inputs["hidden"]
|
31 |
+
for x in h:
|
32 |
+
if h[x] == "PROMPT":
|
33 |
+
input_data_all[x] = prompt
|
34 |
+
if h[x] == "EXTRA_PNGINFO":
|
35 |
+
if "extra_pnginfo" in extra_data:
|
36 |
+
input_data_all[x] = extra_data['extra_pnginfo']
|
37 |
+
if h[x] == "UNIQUE_ID":
|
38 |
+
input_data_all[x] = unique_id
|
39 |
+
return input_data_all
|
40 |
+
|
41 |
+
def recursive_execute(server, prompt, outputs, current_item, extra_data={}):
|
42 |
+
unique_id = current_item
|
43 |
+
inputs = prompt[unique_id]['inputs']
|
44 |
+
class_type = prompt[unique_id]['class_type']
|
45 |
+
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
46 |
+
if unique_id in outputs:
|
47 |
+
return []
|
48 |
+
|
49 |
+
executed = []
|
50 |
+
|
51 |
+
for x in inputs:
|
52 |
+
input_data = inputs[x]
|
53 |
+
|
54 |
+
if isinstance(input_data, list):
|
55 |
+
input_unique_id = input_data[0]
|
56 |
+
output_index = input_data[1]
|
57 |
+
if input_unique_id not in outputs:
|
58 |
+
executed += recursive_execute(server, prompt, outputs, input_unique_id, extra_data)
|
59 |
+
|
60 |
+
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
|
61 |
+
if server.client_id is not None:
|
62 |
+
server.last_node_id = unique_id
|
63 |
+
server.send_sync("executing", { "node": unique_id }, server.client_id)
|
64 |
+
obj = class_def()
|
65 |
+
|
66 |
+
nodes.before_node_execution()
|
67 |
+
outputs[unique_id] = getattr(obj, obj.FUNCTION)(**input_data_all)
|
68 |
+
if "ui" in outputs[unique_id]:
|
69 |
+
if server.client_id is not None:
|
70 |
+
server.send_sync("executed", { "node": unique_id, "output": outputs[unique_id]["ui"] }, server.client_id)
|
71 |
+
if "result" in outputs[unique_id]:
|
72 |
+
outputs[unique_id] = outputs[unique_id]["result"]
|
73 |
+
return executed + [unique_id]
|
74 |
+
|
75 |
+
def recursive_will_execute(prompt, outputs, current_item):
|
76 |
+
unique_id = current_item
|
77 |
+
inputs = prompt[unique_id]['inputs']
|
78 |
+
will_execute = []
|
79 |
+
if unique_id in outputs:
|
80 |
+
return []
|
81 |
+
|
82 |
+
for x in inputs:
|
83 |
+
input_data = inputs[x]
|
84 |
+
if isinstance(input_data, list):
|
85 |
+
input_unique_id = input_data[0]
|
86 |
+
output_index = input_data[1]
|
87 |
+
if input_unique_id not in outputs:
|
88 |
+
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
|
89 |
+
|
90 |
+
return will_execute + [unique_id]
|
91 |
+
|
92 |
+
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
|
93 |
+
unique_id = current_item
|
94 |
+
inputs = prompt[unique_id]['inputs']
|
95 |
+
class_type = prompt[unique_id]['class_type']
|
96 |
+
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
97 |
+
|
98 |
+
is_changed_old = ''
|
99 |
+
is_changed = ''
|
100 |
+
if hasattr(class_def, 'IS_CHANGED'):
|
101 |
+
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
|
102 |
+
is_changed_old = old_prompt[unique_id]['is_changed']
|
103 |
+
if 'is_changed' not in prompt[unique_id]:
|
104 |
+
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
|
105 |
+
if input_data_all is not None:
|
106 |
+
is_changed = class_def.IS_CHANGED(**input_data_all)
|
107 |
+
prompt[unique_id]['is_changed'] = is_changed
|
108 |
+
else:
|
109 |
+
is_changed = prompt[unique_id]['is_changed']
|
110 |
+
|
111 |
+
if unique_id not in outputs:
|
112 |
+
return True
|
113 |
+
|
114 |
+
to_delete = False
|
115 |
+
if is_changed != is_changed_old:
|
116 |
+
to_delete = True
|
117 |
+
elif unique_id not in old_prompt:
|
118 |
+
to_delete = True
|
119 |
+
elif inputs == old_prompt[unique_id]['inputs']:
|
120 |
+
for x in inputs:
|
121 |
+
input_data = inputs[x]
|
122 |
+
|
123 |
+
if isinstance(input_data, list):
|
124 |
+
input_unique_id = input_data[0]
|
125 |
+
output_index = input_data[1]
|
126 |
+
if input_unique_id in outputs:
|
127 |
+
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
|
128 |
+
else:
|
129 |
+
to_delete = True
|
130 |
+
if to_delete:
|
131 |
+
break
|
132 |
+
else:
|
133 |
+
to_delete = True
|
134 |
+
|
135 |
+
if to_delete:
|
136 |
+
d = outputs.pop(unique_id)
|
137 |
+
del d
|
138 |
+
return to_delete
|
139 |
+
|
140 |
+
class PromptExecutor:
|
141 |
+
def __init__(self, server):
|
142 |
+
self.outputs = {}
|
143 |
+
self.old_prompt = {}
|
144 |
+
self.server = server
|
145 |
+
|
146 |
+
def execute(self, prompt, extra_data={}):
|
147 |
+
nodes.interrupt_processing(False)
|
148 |
+
|
149 |
+
if "client_id" in extra_data:
|
150 |
+
self.server.client_id = extra_data["client_id"]
|
151 |
+
else:
|
152 |
+
self.server.client_id = None
|
153 |
+
|
154 |
+
with torch.inference_mode():
|
155 |
+
for x in prompt:
|
156 |
+
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
|
157 |
+
|
158 |
+
current_outputs = set(self.outputs.keys())
|
159 |
+
executed = []
|
160 |
+
try:
|
161 |
+
to_execute = []
|
162 |
+
for x in prompt:
|
163 |
+
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
|
164 |
+
if hasattr(class_, 'OUTPUT_NODE'):
|
165 |
+
to_execute += [(0, x)]
|
166 |
+
|
167 |
+
while len(to_execute) > 0:
|
168 |
+
#always execute the output that depends on the least amount of unexecuted nodes first
|
169 |
+
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
|
170 |
+
x = to_execute.pop(0)[-1]
|
171 |
+
|
172 |
+
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
|
173 |
+
if hasattr(class_, 'OUTPUT_NODE'):
|
174 |
+
if class_.OUTPUT_NODE == True:
|
175 |
+
valid = False
|
176 |
+
try:
|
177 |
+
m = validate_inputs(prompt, x)
|
178 |
+
valid = m[0]
|
179 |
+
except:
|
180 |
+
valid = False
|
181 |
+
if valid:
|
182 |
+
executed += recursive_execute(self.server, prompt, self.outputs, x, extra_data)
|
183 |
+
except Exception as e:
|
184 |
+
print(traceback.format_exc())
|
185 |
+
to_delete = []
|
186 |
+
for o in self.outputs:
|
187 |
+
if o not in current_outputs:
|
188 |
+
to_delete += [o]
|
189 |
+
if o in self.old_prompt:
|
190 |
+
d = self.old_prompt.pop(o)
|
191 |
+
del d
|
192 |
+
for o in to_delete:
|
193 |
+
d = self.outputs.pop(o)
|
194 |
+
del d
|
195 |
+
else:
|
196 |
+
executed = set(executed)
|
197 |
+
for x in executed:
|
198 |
+
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
199 |
+
finally:
|
200 |
+
self.server.last_node_id = None
|
201 |
+
if self.server.client_id is not None:
|
202 |
+
self.server.send_sync("executing", { "node": None }, self.server.client_id)
|
203 |
+
|
204 |
+
gc.collect()
|
205 |
+
if torch.cuda.is_available():
|
206 |
+
if torch.version.cuda: #This seems to make things worse on ROCm so I only do it for cuda
|
207 |
+
torch.cuda.empty_cache()
|
208 |
+
torch.cuda.ipc_collect()
|
209 |
+
|
210 |
+
|
211 |
+
def validate_inputs(prompt, item):
|
212 |
+
unique_id = item
|
213 |
+
inputs = prompt[unique_id]['inputs']
|
214 |
+
class_type = prompt[unique_id]['class_type']
|
215 |
+
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
216 |
+
|
217 |
+
class_inputs = obj_class.INPUT_TYPES()
|
218 |
+
required_inputs = class_inputs['required']
|
219 |
+
for x in required_inputs:
|
220 |
+
if x not in inputs:
|
221 |
+
return (False, "Required input is missing. {}, {}".format(class_type, x))
|
222 |
+
val = inputs[x]
|
223 |
+
info = required_inputs[x]
|
224 |
+
type_input = info[0]
|
225 |
+
if isinstance(val, list):
|
226 |
+
if len(val) != 2:
|
227 |
+
return (False, "Bad Input. {}, {}".format(class_type, x))
|
228 |
+
o_id = val[0]
|
229 |
+
o_class_type = prompt[o_id]['class_type']
|
230 |
+
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
231 |
+
if r[val[1]] != type_input:
|
232 |
+
return (False, "Return type mismatch. {}, {}, {} != {}".format(class_type, x, r[val[1]], type_input))
|
233 |
+
r = validate_inputs(prompt, o_id)
|
234 |
+
if r[0] == False:
|
235 |
+
return r
|
236 |
+
else:
|
237 |
+
if type_input == "INT":
|
238 |
+
val = int(val)
|
239 |
+
inputs[x] = val
|
240 |
+
if type_input == "FLOAT":
|
241 |
+
val = float(val)
|
242 |
+
inputs[x] = val
|
243 |
+
if type_input == "STRING":
|
244 |
+
val = str(val)
|
245 |
+
inputs[x] = val
|
246 |
+
|
247 |
+
if len(info) > 1:
|
248 |
+
if "min" in info[1] and val < info[1]["min"]:
|
249 |
+
return (False, "Value smaller than min. {}, {}".format(class_type, x))
|
250 |
+
if "max" in info[1] and val > info[1]["max"]:
|
251 |
+
return (False, "Value bigger than max. {}, {}".format(class_type, x))
|
252 |
+
|
253 |
+
if isinstance(type_input, list):
|
254 |
+
if val not in type_input:
|
255 |
+
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
|
256 |
+
return (True, "")
|
257 |
+
|
258 |
+
def validate_prompt(prompt):
|
259 |
+
outputs = set()
|
260 |
+
for x in prompt:
|
261 |
+
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
|
262 |
+
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
|
263 |
+
outputs.add(x)
|
264 |
+
|
265 |
+
if len(outputs) == 0:
|
266 |
+
return (False, "Prompt has no outputs")
|
267 |
+
|
268 |
+
good_outputs = set()
|
269 |
+
errors = []
|
270 |
+
for o in outputs:
|
271 |
+
valid = False
|
272 |
+
reason = ""
|
273 |
+
try:
|
274 |
+
m = validate_inputs(prompt, o)
|
275 |
+
valid = m[0]
|
276 |
+
reason = m[1]
|
277 |
+
except:
|
278 |
+
valid = False
|
279 |
+
reason = "Parsing error"
|
280 |
+
|
281 |
+
if valid == True:
|
282 |
+
good_outputs.add(x)
|
283 |
+
else:
|
284 |
+
print("Failed to validate prompt for output {} {}".format(o, reason))
|
285 |
+
print("output will be ignored")
|
286 |
+
errors += [(o, reason)]
|
287 |
+
|
288 |
+
if len(good_outputs) == 0:
|
289 |
+
errors_list = "\n".join(set(map(lambda a: "{}".format(a[1]), errors)))
|
290 |
+
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list))
|
291 |
+
|
292 |
+
return (True, "")
|
293 |
+
|
294 |
+
|
295 |
+
class PromptQueue:
|
296 |
+
def __init__(self, server):
|
297 |
+
self.server = server
|
298 |
+
self.mutex = threading.RLock()
|
299 |
+
self.not_empty = threading.Condition(self.mutex)
|
300 |
+
self.task_counter = 0
|
301 |
+
self.queue = []
|
302 |
+
self.currently_running = {}
|
303 |
+
self.history = {}
|
304 |
+
server.prompt_queue = self
|
305 |
+
|
306 |
+
def put(self, item):
|
307 |
+
with self.mutex:
|
308 |
+
heapq.heappush(self.queue, item)
|
309 |
+
self.server.queue_updated()
|
310 |
+
self.not_empty.notify()
|
311 |
+
|
312 |
+
def get(self):
|
313 |
+
with self.not_empty:
|
314 |
+
while len(self.queue) == 0:
|
315 |
+
self.not_empty.wait()
|
316 |
+
item = heapq.heappop(self.queue)
|
317 |
+
i = self.task_counter
|
318 |
+
self.currently_running[i] = copy.deepcopy(item)
|
319 |
+
self.task_counter += 1
|
320 |
+
self.server.queue_updated()
|
321 |
+
return (item, i)
|
322 |
+
|
323 |
+
def task_done(self, item_id, outputs):
|
324 |
+
with self.mutex:
|
325 |
+
prompt = self.currently_running.pop(item_id)
|
326 |
+
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
|
327 |
+
for o in outputs:
|
328 |
+
if "ui" in outputs[o]:
|
329 |
+
self.history[prompt[1]]["outputs"][o] = outputs[o]["ui"]
|
330 |
+
self.server.queue_updated()
|
331 |
+
|
332 |
+
def get_current_queue(self):
|
333 |
+
with self.mutex:
|
334 |
+
out = []
|
335 |
+
for x in self.currently_running.values():
|
336 |
+
out += [x]
|
337 |
+
return (out, copy.deepcopy(self.queue))
|
338 |
+
|
339 |
+
def get_tasks_remaining(self):
|
340 |
+
with self.mutex:
|
341 |
+
return len(self.queue) + len(self.currently_running)
|
342 |
+
|
343 |
+
def wipe_queue(self):
|
344 |
+
with self.mutex:
|
345 |
+
self.queue = []
|
346 |
+
self.server.queue_updated()
|
347 |
+
|
348 |
+
def delete_queue_item(self, function):
|
349 |
+
with self.mutex:
|
350 |
+
for x in range(len(self.queue)):
|
351 |
+
if function(self.queue[x]):
|
352 |
+
if len(self.queue) == 1:
|
353 |
+
self.wipe_queue()
|
354 |
+
else:
|
355 |
+
self.queue.pop(x)
|
356 |
+
heapq.heapify(self.queue)
|
357 |
+
self.server.queue_updated()
|
358 |
+
return True
|
359 |
+
return False
|
360 |
+
|
361 |
+
def get_history(self):
|
362 |
+
with self.mutex:
|
363 |
+
return copy.deepcopy(self.history)
|
364 |
+
|
365 |
+
def wipe_history(self):
|
366 |
+
with self.mutex:
|
367 |
+
self.history = {}
|
368 |
+
|
369 |
+
def delete_history_item(self, id_to_delete):
|
370 |
+
with self.mutex:
|
371 |
+
self.history.pop(id_to_delete, None)
|
extra_model_paths.yaml.example
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Rename this to extra_model_paths.yaml and ComfyUI will load it
|
2 |
+
|
3 |
+
#config for a1111 ui
|
4 |
+
#all you have to do is change the base_path to where yours is installed
|
5 |
+
a111:
|
6 |
+
base_path: path/to/stable-diffusion-webui/
|
7 |
+
|
8 |
+
checkpoints: models/Stable-diffusion
|
9 |
+
configs: models/Stable-diffusion
|
10 |
+
vae: models/VAE
|
11 |
+
loras: models/Lora
|
12 |
+
upscale_models: |
|
13 |
+
models/ESRGAN
|
14 |
+
models/SwinIR
|
15 |
+
embeddings: embeddings
|
16 |
+
controlnet: models/ControlNet
|
17 |
+
|
18 |
+
#other_ui:
|
19 |
+
# base_path: path/to/ui
|
20 |
+
# checkpoints: models/checkpoints
|
21 |
+
|
22 |
+
|
23 |
+
|
folder_paths.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
supported_ckpt_extensions = set(['.ckpt', '.pth'])
|
4 |
+
supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth'])
|
5 |
+
try:
|
6 |
+
import safetensors.torch
|
7 |
+
supported_ckpt_extensions.add('.safetensors')
|
8 |
+
supported_pt_extensions.add('.safetensors')
|
9 |
+
except:
|
10 |
+
print("Could not import safetensors, safetensors support disabled.")
|
11 |
+
|
12 |
+
|
13 |
+
folder_names_and_paths = {}
|
14 |
+
|
15 |
+
|
16 |
+
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
17 |
+
folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_ckpt_extensions)
|
18 |
+
folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"])
|
19 |
+
|
20 |
+
folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions)
|
21 |
+
folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions)
|
22 |
+
folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions)
|
23 |
+
folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions)
|
24 |
+
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
|
25 |
+
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
|
26 |
+
|
27 |
+
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
|
28 |
+
folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions)
|
29 |
+
|
30 |
+
|
31 |
+
def add_model_folder_path(folder_name, full_folder_path):
|
32 |
+
global folder_names_and_paths
|
33 |
+
if folder_name in folder_names_and_paths:
|
34 |
+
folder_names_and_paths[folder_name][0].append(full_folder_path)
|
35 |
+
|
36 |
+
def get_folder_paths(folder_name):
|
37 |
+
return folder_names_and_paths[folder_name][0][:]
|
38 |
+
|
39 |
+
def recursive_search(directory):
|
40 |
+
result = []
|
41 |
+
for root, subdir, file in os.walk(directory, followlinks=True):
|
42 |
+
for filepath in file:
|
43 |
+
#we os.path,join directory with a blank string to generate a path separator at the end.
|
44 |
+
result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),''))
|
45 |
+
return result
|
46 |
+
|
47 |
+
def filter_files_extensions(files, extensions):
|
48 |
+
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def get_full_path(folder_name, filename):
|
53 |
+
global folder_names_and_paths
|
54 |
+
folders = folder_names_and_paths[folder_name]
|
55 |
+
for x in folders[0]:
|
56 |
+
full_path = os.path.join(x, filename)
|
57 |
+
if os.path.isfile(full_path):
|
58 |
+
return full_path
|
59 |
+
|
60 |
+
|
61 |
+
def get_filename_list(folder_name):
|
62 |
+
global folder_names_and_paths
|
63 |
+
output_list = set()
|
64 |
+
folders = folder_names_and_paths[folder_name]
|
65 |
+
for x in folders[0]:
|
66 |
+
output_list.update(filter_files_extensions(recursive_search(x), folders[1]))
|
67 |
+
return sorted(list(output_list))
|
68 |
+
|
69 |
+
|
main.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
import threading
|
6 |
+
import asyncio
|
7 |
+
|
8 |
+
if os.name == "nt":
|
9 |
+
import logging
|
10 |
+
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
if '--help' in sys.argv:
|
14 |
+
print()
|
15 |
+
print("Valid Command line Arguments:")
|
16 |
+
print("\t--listen [ip]\t\t\tListen on ip or 0.0.0.0 if none given so the UI can be accessed from other computers.")
|
17 |
+
print("\t--port 8188\t\t\tSet the listen port.")
|
18 |
+
print()
|
19 |
+
print("\t--extra-model-paths-config file.yaml\tload an extra_model_paths.yaml file.")
|
20 |
+
print()
|
21 |
+
print()
|
22 |
+
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n")
|
23 |
+
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.")
|
24 |
+
print("\t--use-pytorch-cross-attention\tUse the new pytorch 2.0 cross attention function.")
|
25 |
+
print("\t--disable-xformers\t\tdisables xformers")
|
26 |
+
print("\t--cuda-device 1\t\tSet the id of the cuda device this instance will use.")
|
27 |
+
print()
|
28 |
+
print("\t--highvram\t\t\tBy default models will be unloaded to CPU memory after being used.\n\t\t\t\t\tThis option keeps them in GPU memory.\n")
|
29 |
+
print("\t--normalvram\t\t\tUsed to force normal vram use if lowvram gets automatically enabled.")
|
30 |
+
print("\t--lowvram\t\t\tSplit the unet in parts to use less vram.")
|
31 |
+
print("\t--novram\t\t\tWhen lowvram isn't enough.")
|
32 |
+
print()
|
33 |
+
print("\t--cpu\t\t\tTo use the CPU for everything (slow).")
|
34 |
+
exit()
|
35 |
+
|
36 |
+
if '--dont-upcast-attention' in sys.argv:
|
37 |
+
print("disabling upcasting of attention")
|
38 |
+
os.environ['ATTN_PRECISION'] = "fp16"
|
39 |
+
|
40 |
+
try:
|
41 |
+
index = sys.argv.index('--cuda-device')
|
42 |
+
device = sys.argv[index + 1]
|
43 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device
|
44 |
+
print("Set cuda device to:", device)
|
45 |
+
except:
|
46 |
+
pass
|
47 |
+
|
48 |
+
from nodes import init_custom_nodes
|
49 |
+
import execution
|
50 |
+
import server
|
51 |
+
import folder_paths
|
52 |
+
import yaml
|
53 |
+
|
54 |
+
def prompt_worker(q, server):
|
55 |
+
e = execution.PromptExecutor(server)
|
56 |
+
while True:
|
57 |
+
item, item_id = q.get()
|
58 |
+
e.execute(item[-2], item[-1])
|
59 |
+
q.task_done(item_id, e.outputs)
|
60 |
+
|
61 |
+
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
62 |
+
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
63 |
+
|
64 |
+
def hijack_progress(server):
|
65 |
+
from tqdm.auto import tqdm
|
66 |
+
orig_func = getattr(tqdm, "update")
|
67 |
+
def wrapped_func(*args, **kwargs):
|
68 |
+
pbar = args[0]
|
69 |
+
v = orig_func(*args, **kwargs)
|
70 |
+
server.send_sync("progress", { "value": pbar.n, "max": pbar.total}, server.client_id)
|
71 |
+
return v
|
72 |
+
setattr(tqdm, "update", wrapped_func)
|
73 |
+
|
74 |
+
def cleanup_temp():
|
75 |
+
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
76 |
+
if os.path.exists(temp_dir):
|
77 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
78 |
+
|
79 |
+
def load_extra_path_config(yaml_path):
|
80 |
+
with open(yaml_path, 'r') as stream:
|
81 |
+
config = yaml.safe_load(stream)
|
82 |
+
for c in config:
|
83 |
+
conf = config[c]
|
84 |
+
if conf is None:
|
85 |
+
continue
|
86 |
+
base_path = None
|
87 |
+
if "base_path" in conf:
|
88 |
+
base_path = conf.pop("base_path")
|
89 |
+
for x in conf:
|
90 |
+
for y in conf[x].split("\n"):
|
91 |
+
if len(y) == 0:
|
92 |
+
continue
|
93 |
+
full_path = y
|
94 |
+
if base_path is not None:
|
95 |
+
full_path = os.path.join(base_path, full_path)
|
96 |
+
print("Adding extra search path", x, full_path)
|
97 |
+
folder_paths.add_model_folder_path(x, full_path)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
cleanup_temp()
|
101 |
+
|
102 |
+
loop = asyncio.new_event_loop()
|
103 |
+
asyncio.set_event_loop(loop)
|
104 |
+
server = server.PromptServer(loop)
|
105 |
+
q = execution.PromptQueue(server)
|
106 |
+
|
107 |
+
init_custom_nodes()
|
108 |
+
server.add_routes()
|
109 |
+
hijack_progress(server)
|
110 |
+
|
111 |
+
threading.Thread(target=prompt_worker, daemon=True, args=(q,server,)).start()
|
112 |
+
try:
|
113 |
+
address = '0.0.0.0'
|
114 |
+
p_index = sys.argv.index('--listen')
|
115 |
+
try:
|
116 |
+
ip = sys.argv[p_index + 1]
|
117 |
+
if ip[:2] != '--':
|
118 |
+
address = ip
|
119 |
+
except:
|
120 |
+
pass
|
121 |
+
except:
|
122 |
+
address = '127.0.0.1'
|
123 |
+
|
124 |
+
dont_print = False
|
125 |
+
if '--dont-print-server' in sys.argv:
|
126 |
+
dont_print = True
|
127 |
+
|
128 |
+
extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml")
|
129 |
+
if os.path.isfile(extra_model_paths_config_path):
|
130 |
+
load_extra_path_config(extra_model_paths_config_path)
|
131 |
+
|
132 |
+
if '--extra-model-paths-config' in sys.argv:
|
133 |
+
indices = [(i + 1) for i in range(len(sys.argv) - 1) if sys.argv[i] == '--extra-model-paths-config']
|
134 |
+
for i in indices:
|
135 |
+
load_extra_path_config(sys.argv[i])
|
136 |
+
|
137 |
+
port = 8188
|
138 |
+
try:
|
139 |
+
p_index = sys.argv.index('--port')
|
140 |
+
port = int(sys.argv[p_index + 1])
|
141 |
+
except:
|
142 |
+
pass
|
143 |
+
|
144 |
+
if '--quick-test-for-ci' in sys.argv:
|
145 |
+
exit(0)
|
146 |
+
|
147 |
+
call_on_start = None
|
148 |
+
if "--windows-standalone-build" in sys.argv:
|
149 |
+
def startup_server(address, port):
|
150 |
+
import webbrowser
|
151 |
+
webbrowser.open("http://{}:{}".format(address, port))
|
152 |
+
call_on_start = startup_server
|
153 |
+
|
154 |
+
if os.name == "nt":
|
155 |
+
try:
|
156 |
+
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print, call_on_start=call_on_start))
|
157 |
+
except KeyboardInterrupt:
|
158 |
+
pass
|
159 |
+
else:
|
160 |
+
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print, call_on_start=call_on_start))
|
161 |
+
|
162 |
+
cleanup_temp()
|
nodes.py
ADDED
@@ -0,0 +1,1115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import json
|
6 |
+
import hashlib
|
7 |
+
import copy
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
from PIL.PngImagePlugin import PngInfo
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
15 |
+
|
16 |
+
|
17 |
+
import comfy.samplers
|
18 |
+
import comfy.sd
|
19 |
+
import comfy.utils
|
20 |
+
|
21 |
+
import comfy.clip_vision
|
22 |
+
|
23 |
+
import model_management
|
24 |
+
import importlib
|
25 |
+
|
26 |
+
import folder_paths
|
27 |
+
|
28 |
+
def before_node_execution():
|
29 |
+
model_management.throw_exception_if_processing_interrupted()
|
30 |
+
|
31 |
+
def interrupt_processing(value=True):
|
32 |
+
model_management.interrupt_current_processing(value)
|
33 |
+
|
34 |
+
MAX_RESOLUTION=8192
|
35 |
+
|
36 |
+
class CLIPTextEncode:
|
37 |
+
@classmethod
|
38 |
+
def INPUT_TYPES(s):
|
39 |
+
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
|
40 |
+
RETURN_TYPES = ("CONDITIONING",)
|
41 |
+
FUNCTION = "encode"
|
42 |
+
|
43 |
+
CATEGORY = "conditioning"
|
44 |
+
|
45 |
+
def encode(self, clip, text):
|
46 |
+
return ([[clip.encode(text), {}]], )
|
47 |
+
|
48 |
+
class ConditioningCombine:
|
49 |
+
@classmethod
|
50 |
+
def INPUT_TYPES(s):
|
51 |
+
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
|
52 |
+
RETURN_TYPES = ("CONDITIONING",)
|
53 |
+
FUNCTION = "combine"
|
54 |
+
|
55 |
+
CATEGORY = "conditioning"
|
56 |
+
|
57 |
+
def combine(self, conditioning_1, conditioning_2):
|
58 |
+
return (conditioning_1 + conditioning_2, )
|
59 |
+
|
60 |
+
class ConditioningSetArea:
|
61 |
+
@classmethod
|
62 |
+
def INPUT_TYPES(s):
|
63 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
64 |
+
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
65 |
+
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
66 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
|
67 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
|
68 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
69 |
+
}}
|
70 |
+
RETURN_TYPES = ("CONDITIONING",)
|
71 |
+
FUNCTION = "append"
|
72 |
+
|
73 |
+
CATEGORY = "conditioning"
|
74 |
+
|
75 |
+
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
|
76 |
+
c = []
|
77 |
+
for t in conditioning:
|
78 |
+
n = [t[0], t[1].copy()]
|
79 |
+
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
|
80 |
+
n[1]['strength'] = strength
|
81 |
+
n[1]['min_sigma'] = min_sigma
|
82 |
+
n[1]['max_sigma'] = max_sigma
|
83 |
+
c.append(n)
|
84 |
+
return (c, )
|
85 |
+
|
86 |
+
class VAEDecode:
|
87 |
+
def __init__(self, device="cpu"):
|
88 |
+
self.device = device
|
89 |
+
|
90 |
+
@classmethod
|
91 |
+
def INPUT_TYPES(s):
|
92 |
+
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
93 |
+
RETURN_TYPES = ("IMAGE",)
|
94 |
+
FUNCTION = "decode"
|
95 |
+
|
96 |
+
CATEGORY = "latent"
|
97 |
+
|
98 |
+
def decode(self, vae, samples):
|
99 |
+
return (vae.decode(samples["samples"]), )
|
100 |
+
|
101 |
+
class VAEDecodeTiled:
|
102 |
+
def __init__(self, device="cpu"):
|
103 |
+
self.device = device
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def INPUT_TYPES(s):
|
107 |
+
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
108 |
+
RETURN_TYPES = ("IMAGE",)
|
109 |
+
FUNCTION = "decode"
|
110 |
+
|
111 |
+
CATEGORY = "_for_testing"
|
112 |
+
|
113 |
+
def decode(self, vae, samples):
|
114 |
+
return (vae.decode_tiled(samples["samples"]), )
|
115 |
+
|
116 |
+
class VAEEncode:
|
117 |
+
def __init__(self, device="cpu"):
|
118 |
+
self.device = device
|
119 |
+
|
120 |
+
@classmethod
|
121 |
+
def INPUT_TYPES(s):
|
122 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
123 |
+
RETURN_TYPES = ("LATENT",)
|
124 |
+
FUNCTION = "encode"
|
125 |
+
|
126 |
+
CATEGORY = "latent"
|
127 |
+
|
128 |
+
def encode(self, vae, pixels):
|
129 |
+
x = (pixels.shape[1] // 64) * 64
|
130 |
+
y = (pixels.shape[2] // 64) * 64
|
131 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
132 |
+
pixels = pixels[:,:x,:y,:]
|
133 |
+
t = vae.encode(pixels[:,:,:,:3])
|
134 |
+
|
135 |
+
return ({"samples":t}, )
|
136 |
+
|
137 |
+
|
138 |
+
class VAEEncodeTiled:
|
139 |
+
def __init__(self, device="cpu"):
|
140 |
+
self.device = device
|
141 |
+
|
142 |
+
@classmethod
|
143 |
+
def INPUT_TYPES(s):
|
144 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
145 |
+
RETURN_TYPES = ("LATENT",)
|
146 |
+
FUNCTION = "encode"
|
147 |
+
|
148 |
+
CATEGORY = "_for_testing"
|
149 |
+
|
150 |
+
def encode(self, vae, pixels):
|
151 |
+
x = (pixels.shape[1] // 64) * 64
|
152 |
+
y = (pixels.shape[2] // 64) * 64
|
153 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
154 |
+
pixels = pixels[:,:x,:y,:]
|
155 |
+
t = vae.encode_tiled(pixels[:,:,:,:3])
|
156 |
+
|
157 |
+
return ({"samples":t}, )
|
158 |
+
class VAEEncodeForInpaint:
|
159 |
+
def __init__(self, device="cpu"):
|
160 |
+
self.device = device
|
161 |
+
|
162 |
+
@classmethod
|
163 |
+
def INPUT_TYPES(s):
|
164 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
|
165 |
+
RETURN_TYPES = ("LATENT",)
|
166 |
+
FUNCTION = "encode"
|
167 |
+
|
168 |
+
CATEGORY = "latent/inpaint"
|
169 |
+
|
170 |
+
def encode(self, vae, pixels, mask):
|
171 |
+
x = (pixels.shape[1] // 64) * 64
|
172 |
+
y = (pixels.shape[2] // 64) * 64
|
173 |
+
mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]
|
174 |
+
|
175 |
+
pixels = pixels.clone()
|
176 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
177 |
+
pixels = pixels[:,:x,:y,:]
|
178 |
+
mask = mask[:x,:y]
|
179 |
+
|
180 |
+
#grow mask by a few pixels to keep things seamless in latent space
|
181 |
+
kernel_tensor = torch.ones((1, 1, 6, 6))
|
182 |
+
mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
|
183 |
+
m = (1.0 - mask.round())
|
184 |
+
for i in range(3):
|
185 |
+
pixels[:,:,:,i] -= 0.5
|
186 |
+
pixels[:,:,:,i] *= m
|
187 |
+
pixels[:,:,:,i] += 0.5
|
188 |
+
t = vae.encode(pixels)
|
189 |
+
|
190 |
+
return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
|
191 |
+
|
192 |
+
class CheckpointLoader:
|
193 |
+
@classmethod
|
194 |
+
def INPUT_TYPES(s):
|
195 |
+
return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
|
196 |
+
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
|
197 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
198 |
+
FUNCTION = "load_checkpoint"
|
199 |
+
|
200 |
+
CATEGORY = "loaders"
|
201 |
+
|
202 |
+
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
|
203 |
+
config_path = folder_paths.get_full_path("configs", config_name)
|
204 |
+
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
205 |
+
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
206 |
+
|
207 |
+
class CheckpointLoaderSimple:
|
208 |
+
@classmethod
|
209 |
+
def INPUT_TYPES(s):
|
210 |
+
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
211 |
+
}}
|
212 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
213 |
+
FUNCTION = "load_checkpoint"
|
214 |
+
|
215 |
+
CATEGORY = "loaders"
|
216 |
+
|
217 |
+
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
218 |
+
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
219 |
+
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
220 |
+
return out
|
221 |
+
|
222 |
+
class unCLIPCheckpointLoader:
|
223 |
+
@classmethod
|
224 |
+
def INPUT_TYPES(s):
|
225 |
+
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
226 |
+
}}
|
227 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
|
228 |
+
FUNCTION = "load_checkpoint"
|
229 |
+
|
230 |
+
CATEGORY = "_for_testing/unclip"
|
231 |
+
|
232 |
+
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
233 |
+
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
234 |
+
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
235 |
+
return out
|
236 |
+
|
237 |
+
class CLIPSetLastLayer:
|
238 |
+
@classmethod
|
239 |
+
def INPUT_TYPES(s):
|
240 |
+
return {"required": { "clip": ("CLIP", ),
|
241 |
+
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
|
242 |
+
}}
|
243 |
+
RETURN_TYPES = ("CLIP",)
|
244 |
+
FUNCTION = "set_last_layer"
|
245 |
+
|
246 |
+
CATEGORY = "conditioning"
|
247 |
+
|
248 |
+
def set_last_layer(self, clip, stop_at_clip_layer):
|
249 |
+
clip = clip.clone()
|
250 |
+
clip.clip_layer(stop_at_clip_layer)
|
251 |
+
return (clip,)
|
252 |
+
|
253 |
+
class LoraLoader:
|
254 |
+
@classmethod
|
255 |
+
def INPUT_TYPES(s):
|
256 |
+
return {"required": { "model": ("MODEL",),
|
257 |
+
"clip": ("CLIP", ),
|
258 |
+
"lora_name": (folder_paths.get_filename_list("loras"), ),
|
259 |
+
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
260 |
+
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
261 |
+
}}
|
262 |
+
RETURN_TYPES = ("MODEL", "CLIP")
|
263 |
+
FUNCTION = "load_lora"
|
264 |
+
|
265 |
+
CATEGORY = "loaders"
|
266 |
+
|
267 |
+
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
|
268 |
+
lora_path = folder_paths.get_full_path("loras", lora_name)
|
269 |
+
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
|
270 |
+
return (model_lora, clip_lora)
|
271 |
+
|
272 |
+
class TomePatchModel:
|
273 |
+
@classmethod
|
274 |
+
def INPUT_TYPES(s):
|
275 |
+
return {"required": { "model": ("MODEL",),
|
276 |
+
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
|
277 |
+
}}
|
278 |
+
RETURN_TYPES = ("MODEL",)
|
279 |
+
FUNCTION = "patch"
|
280 |
+
|
281 |
+
CATEGORY = "_for_testing"
|
282 |
+
|
283 |
+
def patch(self, model, ratio):
|
284 |
+
m = model.clone()
|
285 |
+
m.set_model_tomesd(ratio)
|
286 |
+
return (m, )
|
287 |
+
|
288 |
+
class VAELoader:
|
289 |
+
@classmethod
|
290 |
+
def INPUT_TYPES(s):
|
291 |
+
return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
|
292 |
+
RETURN_TYPES = ("VAE",)
|
293 |
+
FUNCTION = "load_vae"
|
294 |
+
|
295 |
+
CATEGORY = "loaders"
|
296 |
+
|
297 |
+
#TODO: scale factor?
|
298 |
+
def load_vae(self, vae_name):
|
299 |
+
vae_path = folder_paths.get_full_path("vae", vae_name)
|
300 |
+
vae = comfy.sd.VAE(ckpt_path=vae_path)
|
301 |
+
return (vae,)
|
302 |
+
|
303 |
+
class ControlNetLoader:
|
304 |
+
@classmethod
|
305 |
+
def INPUT_TYPES(s):
|
306 |
+
return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
|
307 |
+
|
308 |
+
RETURN_TYPES = ("CONTROL_NET",)
|
309 |
+
FUNCTION = "load_controlnet"
|
310 |
+
|
311 |
+
CATEGORY = "loaders"
|
312 |
+
|
313 |
+
def load_controlnet(self, control_net_name):
|
314 |
+
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
315 |
+
controlnet = comfy.sd.load_controlnet(controlnet_path)
|
316 |
+
return (controlnet,)
|
317 |
+
|
318 |
+
class DiffControlNetLoader:
|
319 |
+
@classmethod
|
320 |
+
def INPUT_TYPES(s):
|
321 |
+
return {"required": { "model": ("MODEL",),
|
322 |
+
"control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
|
323 |
+
|
324 |
+
RETURN_TYPES = ("CONTROL_NET",)
|
325 |
+
FUNCTION = "load_controlnet"
|
326 |
+
|
327 |
+
CATEGORY = "loaders"
|
328 |
+
|
329 |
+
def load_controlnet(self, model, control_net_name):
|
330 |
+
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
331 |
+
controlnet = comfy.sd.load_controlnet(controlnet_path, model)
|
332 |
+
return (controlnet,)
|
333 |
+
|
334 |
+
|
335 |
+
class ControlNetApply:
|
336 |
+
@classmethod
|
337 |
+
def INPUT_TYPES(s):
|
338 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
339 |
+
"control_net": ("CONTROL_NET", ),
|
340 |
+
"image": ("IMAGE", ),
|
341 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
342 |
+
}}
|
343 |
+
RETURN_TYPES = ("CONDITIONING",)
|
344 |
+
FUNCTION = "apply_controlnet"
|
345 |
+
|
346 |
+
CATEGORY = "conditioning"
|
347 |
+
|
348 |
+
def apply_controlnet(self, conditioning, control_net, image, strength):
|
349 |
+
c = []
|
350 |
+
control_hint = image.movedim(-1,1)
|
351 |
+
print(control_hint.shape)
|
352 |
+
for t in conditioning:
|
353 |
+
n = [t[0], t[1].copy()]
|
354 |
+
c_net = control_net.copy().set_cond_hint(control_hint, strength)
|
355 |
+
if 'control' in t[1]:
|
356 |
+
c_net.set_previous_controlnet(t[1]['control'])
|
357 |
+
n[1]['control'] = c_net
|
358 |
+
c.append(n)
|
359 |
+
return (c, )
|
360 |
+
|
361 |
+
class CLIPLoader:
|
362 |
+
@classmethod
|
363 |
+
def INPUT_TYPES(s):
|
364 |
+
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
|
365 |
+
}}
|
366 |
+
RETURN_TYPES = ("CLIP",)
|
367 |
+
FUNCTION = "load_clip"
|
368 |
+
|
369 |
+
CATEGORY = "loaders"
|
370 |
+
|
371 |
+
def load_clip(self, clip_name):
|
372 |
+
clip_path = folder_paths.get_full_path("clip", clip_name)
|
373 |
+
clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
374 |
+
return (clip,)
|
375 |
+
|
376 |
+
class CLIPVisionLoader:
|
377 |
+
@classmethod
|
378 |
+
def INPUT_TYPES(s):
|
379 |
+
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
|
380 |
+
}}
|
381 |
+
RETURN_TYPES = ("CLIP_VISION",)
|
382 |
+
FUNCTION = "load_clip"
|
383 |
+
|
384 |
+
CATEGORY = "loaders"
|
385 |
+
|
386 |
+
def load_clip(self, clip_name):
|
387 |
+
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
|
388 |
+
clip_vision = comfy.clip_vision.load(clip_path)
|
389 |
+
return (clip_vision,)
|
390 |
+
|
391 |
+
class CLIPVisionEncode:
|
392 |
+
@classmethod
|
393 |
+
def INPUT_TYPES(s):
|
394 |
+
return {"required": { "clip_vision": ("CLIP_VISION",),
|
395 |
+
"image": ("IMAGE",)
|
396 |
+
}}
|
397 |
+
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
|
398 |
+
FUNCTION = "encode"
|
399 |
+
|
400 |
+
CATEGORY = "conditioning"
|
401 |
+
|
402 |
+
def encode(self, clip_vision, image):
|
403 |
+
output = clip_vision.encode_image(image)
|
404 |
+
return (output,)
|
405 |
+
|
406 |
+
class StyleModelLoader:
|
407 |
+
@classmethod
|
408 |
+
def INPUT_TYPES(s):
|
409 |
+
return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
|
410 |
+
|
411 |
+
RETURN_TYPES = ("STYLE_MODEL",)
|
412 |
+
FUNCTION = "load_style_model"
|
413 |
+
|
414 |
+
CATEGORY = "loaders"
|
415 |
+
|
416 |
+
def load_style_model(self, style_model_name):
|
417 |
+
style_model_path = folder_paths.get_full_path("style_models", style_model_name)
|
418 |
+
style_model = comfy.sd.load_style_model(style_model_path)
|
419 |
+
return (style_model,)
|
420 |
+
|
421 |
+
|
422 |
+
class StyleModelApply:
|
423 |
+
@classmethod
|
424 |
+
def INPUT_TYPES(s):
|
425 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
426 |
+
"style_model": ("STYLE_MODEL", ),
|
427 |
+
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
428 |
+
}}
|
429 |
+
RETURN_TYPES = ("CONDITIONING",)
|
430 |
+
FUNCTION = "apply_stylemodel"
|
431 |
+
|
432 |
+
CATEGORY = "conditioning/style_model"
|
433 |
+
|
434 |
+
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
|
435 |
+
cond = style_model.get_cond(clip_vision_output)
|
436 |
+
c = []
|
437 |
+
for t in conditioning:
|
438 |
+
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
439 |
+
c.append(n)
|
440 |
+
return (c, )
|
441 |
+
|
442 |
+
class unCLIPConditioning:
|
443 |
+
@classmethod
|
444 |
+
def INPUT_TYPES(s):
|
445 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
446 |
+
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
447 |
+
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
448 |
+
}}
|
449 |
+
RETURN_TYPES = ("CONDITIONING",)
|
450 |
+
FUNCTION = "apply_adm"
|
451 |
+
|
452 |
+
CATEGORY = "_for_testing/unclip"
|
453 |
+
|
454 |
+
def apply_adm(self, conditioning, clip_vision_output, strength):
|
455 |
+
c = []
|
456 |
+
for t in conditioning:
|
457 |
+
o = t[1].copy()
|
458 |
+
x = (clip_vision_output, strength)
|
459 |
+
if "adm" in o:
|
460 |
+
o["adm"] = o["adm"][:] + [x]
|
461 |
+
else:
|
462 |
+
o["adm"] = [x]
|
463 |
+
n = [t[0], o]
|
464 |
+
c.append(n)
|
465 |
+
return (c, )
|
466 |
+
|
467 |
+
|
468 |
+
class EmptyLatentImage:
|
469 |
+
def __init__(self, device="cpu"):
|
470 |
+
self.device = device
|
471 |
+
|
472 |
+
@classmethod
|
473 |
+
def INPUT_TYPES(s):
|
474 |
+
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
475 |
+
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
476 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
|
477 |
+
RETURN_TYPES = ("LATENT",)
|
478 |
+
FUNCTION = "generate"
|
479 |
+
|
480 |
+
CATEGORY = "latent"
|
481 |
+
|
482 |
+
def generate(self, width, height, batch_size=1):
|
483 |
+
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
484 |
+
return ({"samples":latent}, )
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
class LatentUpscale:
|
489 |
+
upscale_methods = ["nearest-exact", "bilinear", "area"]
|
490 |
+
crop_methods = ["disabled", "center"]
|
491 |
+
|
492 |
+
@classmethod
|
493 |
+
def INPUT_TYPES(s):
|
494 |
+
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
495 |
+
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
496 |
+
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
497 |
+
"crop": (s.crop_methods,)}}
|
498 |
+
RETURN_TYPES = ("LATENT",)
|
499 |
+
FUNCTION = "upscale"
|
500 |
+
|
501 |
+
CATEGORY = "latent"
|
502 |
+
|
503 |
+
def upscale(self, samples, upscale_method, width, height, crop):
|
504 |
+
s = samples.copy()
|
505 |
+
s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
|
506 |
+
return (s,)
|
507 |
+
|
508 |
+
class LatentRotate:
|
509 |
+
@classmethod
|
510 |
+
def INPUT_TYPES(s):
|
511 |
+
return {"required": { "samples": ("LATENT",),
|
512 |
+
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
|
513 |
+
}}
|
514 |
+
RETURN_TYPES = ("LATENT",)
|
515 |
+
FUNCTION = "rotate"
|
516 |
+
|
517 |
+
CATEGORY = "latent/transform"
|
518 |
+
|
519 |
+
def rotate(self, samples, rotation):
|
520 |
+
s = samples.copy()
|
521 |
+
rotate_by = 0
|
522 |
+
if rotation.startswith("90"):
|
523 |
+
rotate_by = 1
|
524 |
+
elif rotation.startswith("180"):
|
525 |
+
rotate_by = 2
|
526 |
+
elif rotation.startswith("270"):
|
527 |
+
rotate_by = 3
|
528 |
+
|
529 |
+
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
|
530 |
+
return (s,)
|
531 |
+
|
532 |
+
class LatentFlip:
|
533 |
+
@classmethod
|
534 |
+
def INPUT_TYPES(s):
|
535 |
+
return {"required": { "samples": ("LATENT",),
|
536 |
+
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
|
537 |
+
}}
|
538 |
+
RETURN_TYPES = ("LATENT",)
|
539 |
+
FUNCTION = "flip"
|
540 |
+
|
541 |
+
CATEGORY = "latent/transform"
|
542 |
+
|
543 |
+
def flip(self, samples, flip_method):
|
544 |
+
s = samples.copy()
|
545 |
+
if flip_method.startswith("x"):
|
546 |
+
s["samples"] = torch.flip(samples["samples"], dims=[2])
|
547 |
+
elif flip_method.startswith("y"):
|
548 |
+
s["samples"] = torch.flip(samples["samples"], dims=[3])
|
549 |
+
|
550 |
+
return (s,)
|
551 |
+
|
552 |
+
class LatentComposite:
|
553 |
+
@classmethod
|
554 |
+
def INPUT_TYPES(s):
|
555 |
+
return {"required": { "samples_to": ("LATENT",),
|
556 |
+
"samples_from": ("LATENT",),
|
557 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
558 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
559 |
+
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
560 |
+
}}
|
561 |
+
RETURN_TYPES = ("LATENT",)
|
562 |
+
FUNCTION = "composite"
|
563 |
+
|
564 |
+
CATEGORY = "latent"
|
565 |
+
|
566 |
+
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
|
567 |
+
x = x // 8
|
568 |
+
y = y // 8
|
569 |
+
feather = feather // 8
|
570 |
+
samples_out = samples_to.copy()
|
571 |
+
s = samples_to["samples"].clone()
|
572 |
+
samples_to = samples_to["samples"]
|
573 |
+
samples_from = samples_from["samples"]
|
574 |
+
if feather == 0:
|
575 |
+
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
576 |
+
else:
|
577 |
+
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
578 |
+
mask = torch.ones_like(samples_from)
|
579 |
+
for t in range(feather):
|
580 |
+
if y != 0:
|
581 |
+
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
582 |
+
|
583 |
+
if y + samples_from.shape[2] < samples_to.shape[2]:
|
584 |
+
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
585 |
+
if x != 0:
|
586 |
+
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
587 |
+
if x + samples_from.shape[3] < samples_to.shape[3]:
|
588 |
+
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
589 |
+
rev_mask = torch.ones_like(mask) - mask
|
590 |
+
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
|
591 |
+
samples_out["samples"] = s
|
592 |
+
return (samples_out,)
|
593 |
+
|
594 |
+
class LatentCrop:
|
595 |
+
@classmethod
|
596 |
+
def INPUT_TYPES(s):
|
597 |
+
return {"required": { "samples": ("LATENT",),
|
598 |
+
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
599 |
+
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
|
600 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
601 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
602 |
+
}}
|
603 |
+
RETURN_TYPES = ("LATENT",)
|
604 |
+
FUNCTION = "crop"
|
605 |
+
|
606 |
+
CATEGORY = "latent/transform"
|
607 |
+
|
608 |
+
def crop(self, samples, width, height, x, y):
|
609 |
+
s = samples.copy()
|
610 |
+
samples = samples['samples']
|
611 |
+
x = x // 8
|
612 |
+
y = y // 8
|
613 |
+
|
614 |
+
#enfonce minimum size of 64
|
615 |
+
if x > (samples.shape[3] - 8):
|
616 |
+
x = samples.shape[3] - 8
|
617 |
+
if y > (samples.shape[2] - 8):
|
618 |
+
y = samples.shape[2] - 8
|
619 |
+
|
620 |
+
new_height = height // 8
|
621 |
+
new_width = width // 8
|
622 |
+
to_x = new_width + x
|
623 |
+
to_y = new_height + y
|
624 |
+
def enforce_image_dim(d, to_d, max_d):
|
625 |
+
if to_d > max_d:
|
626 |
+
leftover = (to_d - max_d) % 8
|
627 |
+
to_d = max_d
|
628 |
+
d -= leftover
|
629 |
+
return (d, to_d)
|
630 |
+
|
631 |
+
#make sure size is always multiple of 64
|
632 |
+
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
|
633 |
+
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
|
634 |
+
s['samples'] = samples[:,:,y:to_y, x:to_x]
|
635 |
+
return (s,)
|
636 |
+
|
637 |
+
class SetLatentNoiseMask:
|
638 |
+
@classmethod
|
639 |
+
def INPUT_TYPES(s):
|
640 |
+
return {"required": { "samples": ("LATENT",),
|
641 |
+
"mask": ("MASK",),
|
642 |
+
}}
|
643 |
+
RETURN_TYPES = ("LATENT",)
|
644 |
+
FUNCTION = "set_mask"
|
645 |
+
|
646 |
+
CATEGORY = "latent/inpaint"
|
647 |
+
|
648 |
+
def set_mask(self, samples, mask):
|
649 |
+
s = samples.copy()
|
650 |
+
s["noise_mask"] = mask
|
651 |
+
return (s,)
|
652 |
+
|
653 |
+
|
654 |
+
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
655 |
+
latent_image = latent["samples"]
|
656 |
+
noise_mask = None
|
657 |
+
device = model_management.get_torch_device()
|
658 |
+
|
659 |
+
if disable_noise:
|
660 |
+
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
661 |
+
else:
|
662 |
+
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
|
663 |
+
|
664 |
+
if "noise_mask" in latent:
|
665 |
+
noise_mask = latent['noise_mask']
|
666 |
+
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
667 |
+
noise_mask = noise_mask.round()
|
668 |
+
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
669 |
+
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
670 |
+
noise_mask = noise_mask.to(device)
|
671 |
+
|
672 |
+
real_model = None
|
673 |
+
model_management.load_model_gpu(model)
|
674 |
+
real_model = model.model
|
675 |
+
|
676 |
+
noise = noise.to(device)
|
677 |
+
latent_image = latent_image.to(device)
|
678 |
+
|
679 |
+
positive_copy = []
|
680 |
+
negative_copy = []
|
681 |
+
|
682 |
+
control_nets = []
|
683 |
+
for p in positive:
|
684 |
+
t = p[0]
|
685 |
+
if t.shape[0] < noise.shape[0]:
|
686 |
+
t = torch.cat([t] * noise.shape[0])
|
687 |
+
t = t.to(device)
|
688 |
+
if 'control' in p[1]:
|
689 |
+
control_nets += [p[1]['control']]
|
690 |
+
positive_copy += [[t] + p[1:]]
|
691 |
+
for n in negative:
|
692 |
+
t = n[0]
|
693 |
+
if t.shape[0] < noise.shape[0]:
|
694 |
+
t = torch.cat([t] * noise.shape[0])
|
695 |
+
t = t.to(device)
|
696 |
+
if 'control' in n[1]:
|
697 |
+
control_nets += [n[1]['control']]
|
698 |
+
negative_copy += [[t] + n[1:]]
|
699 |
+
|
700 |
+
control_net_models = []
|
701 |
+
for x in control_nets:
|
702 |
+
control_net_models += x.get_control_models()
|
703 |
+
model_management.load_controlnet_gpu(control_net_models)
|
704 |
+
|
705 |
+
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
706 |
+
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
707 |
+
else:
|
708 |
+
#other samplers
|
709 |
+
pass
|
710 |
+
|
711 |
+
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
|
712 |
+
samples = samples.cpu()
|
713 |
+
for c in control_nets:
|
714 |
+
c.cleanup()
|
715 |
+
|
716 |
+
out = latent.copy()
|
717 |
+
out["samples"] = samples
|
718 |
+
return (out, )
|
719 |
+
|
720 |
+
class KSampler:
|
721 |
+
@classmethod
|
722 |
+
def INPUT_TYPES(s):
|
723 |
+
return {"required":
|
724 |
+
{"model": ("MODEL",),
|
725 |
+
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
726 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
727 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
728 |
+
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
729 |
+
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
|
730 |
+
"positive": ("CONDITIONING", ),
|
731 |
+
"negative": ("CONDITIONING", ),
|
732 |
+
"latent_image": ("LATENT", ),
|
733 |
+
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
734 |
+
}}
|
735 |
+
|
736 |
+
RETURN_TYPES = ("LATENT",)
|
737 |
+
FUNCTION = "sample"
|
738 |
+
|
739 |
+
CATEGORY = "sampling"
|
740 |
+
|
741 |
+
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
742 |
+
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
|
743 |
+
|
744 |
+
class KSamplerAdvanced:
|
745 |
+
@classmethod
|
746 |
+
def INPUT_TYPES(s):
|
747 |
+
return {"required":
|
748 |
+
{"model": ("MODEL",),
|
749 |
+
"add_noise": (["enable", "disable"], ),
|
750 |
+
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
751 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
752 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
|
753 |
+
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
754 |
+
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
|
755 |
+
"positive": ("CONDITIONING", ),
|
756 |
+
"negative": ("CONDITIONING", ),
|
757 |
+
"latent_image": ("LATENT", ),
|
758 |
+
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
759 |
+
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
760 |
+
"return_with_leftover_noise": (["disable", "enable"], ),
|
761 |
+
}}
|
762 |
+
|
763 |
+
RETURN_TYPES = ("LATENT",)
|
764 |
+
FUNCTION = "sample"
|
765 |
+
|
766 |
+
CATEGORY = "sampling"
|
767 |
+
|
768 |
+
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
|
769 |
+
force_full_denoise = True
|
770 |
+
if return_with_leftover_noise == "enable":
|
771 |
+
force_full_denoise = False
|
772 |
+
disable_noise = False
|
773 |
+
if add_noise == "disable":
|
774 |
+
disable_noise = True
|
775 |
+
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
776 |
+
|
777 |
+
class SaveImage:
|
778 |
+
def __init__(self):
|
779 |
+
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
780 |
+
self.type = "output"
|
781 |
+
|
782 |
+
@classmethod
|
783 |
+
def INPUT_TYPES(s):
|
784 |
+
return {"required":
|
785 |
+
{"images": ("IMAGE", ),
|
786 |
+
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
|
787 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
788 |
+
}
|
789 |
+
|
790 |
+
RETURN_TYPES = ()
|
791 |
+
FUNCTION = "save_images"
|
792 |
+
|
793 |
+
OUTPUT_NODE = True
|
794 |
+
|
795 |
+
CATEGORY = "image"
|
796 |
+
|
797 |
+
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
798 |
+
def map_filename(filename):
|
799 |
+
prefix_len = len(os.path.basename(filename_prefix))
|
800 |
+
prefix = filename[:prefix_len + 1]
|
801 |
+
try:
|
802 |
+
digits = int(filename[prefix_len + 1:].split('_')[0])
|
803 |
+
except:
|
804 |
+
digits = 0
|
805 |
+
return (digits, prefix)
|
806 |
+
|
807 |
+
def compute_vars(input):
|
808 |
+
input = input.replace("%width%", str(images[0].shape[1]))
|
809 |
+
input = input.replace("%height%", str(images[0].shape[0]))
|
810 |
+
return input
|
811 |
+
|
812 |
+
filename_prefix = compute_vars(filename_prefix)
|
813 |
+
|
814 |
+
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
|
815 |
+
filename = os.path.basename(os.path.normpath(filename_prefix))
|
816 |
+
|
817 |
+
full_output_folder = os.path.join(self.output_dir, subfolder)
|
818 |
+
|
819 |
+
if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
|
820 |
+
print("Saving image outside the output folder is not allowed.")
|
821 |
+
return {}
|
822 |
+
|
823 |
+
try:
|
824 |
+
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
|
825 |
+
except ValueError:
|
826 |
+
counter = 1
|
827 |
+
except FileNotFoundError:
|
828 |
+
os.makedirs(full_output_folder, exist_ok=True)
|
829 |
+
counter = 1
|
830 |
+
|
831 |
+
if not os.path.exists(self.output_dir):
|
832 |
+
os.makedirs(self.output_dir)
|
833 |
+
|
834 |
+
results = list()
|
835 |
+
for image in images:
|
836 |
+
i = 255. * image.cpu().numpy()
|
837 |
+
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
838 |
+
metadata = PngInfo()
|
839 |
+
if prompt is not None:
|
840 |
+
metadata.add_text("prompt", json.dumps(prompt))
|
841 |
+
if extra_pnginfo is not None:
|
842 |
+
for x in extra_pnginfo:
|
843 |
+
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
844 |
+
|
845 |
+
file = f"{filename}_{counter:05}_.png"
|
846 |
+
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
|
847 |
+
results.append({
|
848 |
+
"filename": file,
|
849 |
+
"subfolder": subfolder,
|
850 |
+
"type": self.type
|
851 |
+
});
|
852 |
+
counter += 1
|
853 |
+
|
854 |
+
return { "ui": { "images": results } }
|
855 |
+
|
856 |
+
class PreviewImage(SaveImage):
|
857 |
+
def __init__(self):
|
858 |
+
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
859 |
+
self.type = "temp"
|
860 |
+
|
861 |
+
@classmethod
|
862 |
+
def INPUT_TYPES(s):
|
863 |
+
return {"required":
|
864 |
+
{"images": ("IMAGE", ), },
|
865 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
866 |
+
}
|
867 |
+
|
868 |
+
class LoadImage:
|
869 |
+
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
870 |
+
@classmethod
|
871 |
+
def INPUT_TYPES(s):
|
872 |
+
if not os.path.exists(s.input_dir):
|
873 |
+
os.makedirs(s.input_dir)
|
874 |
+
return {"required":
|
875 |
+
{"image": (sorted(os.listdir(s.input_dir)), )},
|
876 |
+
}
|
877 |
+
|
878 |
+
CATEGORY = "image"
|
879 |
+
|
880 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
881 |
+
FUNCTION = "load_image"
|
882 |
+
def load_image(self, image):
|
883 |
+
image_path = os.path.join(self.input_dir, image)
|
884 |
+
i = Image.open(image_path)
|
885 |
+
image = i.convert("RGB")
|
886 |
+
image = np.array(image).astype(np.float32) / 255.0
|
887 |
+
image = torch.from_numpy(image)[None,]
|
888 |
+
if 'A' in i.getbands():
|
889 |
+
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
890 |
+
mask = 1. - torch.from_numpy(mask)
|
891 |
+
else:
|
892 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
893 |
+
return (image, mask)
|
894 |
+
|
895 |
+
@classmethod
|
896 |
+
def IS_CHANGED(s, image):
|
897 |
+
image_path = os.path.join(s.input_dir, image)
|
898 |
+
m = hashlib.sha256()
|
899 |
+
with open(image_path, 'rb') as f:
|
900 |
+
m.update(f.read())
|
901 |
+
return m.digest().hex()
|
902 |
+
|
903 |
+
class LoadImageMask:
|
904 |
+
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
905 |
+
@classmethod
|
906 |
+
def INPUT_TYPES(s):
|
907 |
+
return {"required":
|
908 |
+
{"image": (sorted(os.listdir(s.input_dir)), ),
|
909 |
+
"channel": (["alpha", "red", "green", "blue"], ),}
|
910 |
+
}
|
911 |
+
|
912 |
+
CATEGORY = "image"
|
913 |
+
|
914 |
+
RETURN_TYPES = ("MASK",)
|
915 |
+
FUNCTION = "load_image"
|
916 |
+
def load_image(self, image, channel):
|
917 |
+
image_path = os.path.join(self.input_dir, image)
|
918 |
+
i = Image.open(image_path)
|
919 |
+
mask = None
|
920 |
+
c = channel[0].upper()
|
921 |
+
if c in i.getbands():
|
922 |
+
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
923 |
+
mask = torch.from_numpy(mask)
|
924 |
+
if c == 'A':
|
925 |
+
mask = 1. - mask
|
926 |
+
else:
|
927 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
928 |
+
return (mask,)
|
929 |
+
|
930 |
+
@classmethod
|
931 |
+
def IS_CHANGED(s, image, channel):
|
932 |
+
image_path = os.path.join(s.input_dir, image)
|
933 |
+
m = hashlib.sha256()
|
934 |
+
with open(image_path, 'rb') as f:
|
935 |
+
m.update(f.read())
|
936 |
+
return m.digest().hex()
|
937 |
+
|
938 |
+
class ImageScale:
|
939 |
+
upscale_methods = ["nearest-exact", "bilinear", "area"]
|
940 |
+
crop_methods = ["disabled", "center"]
|
941 |
+
|
942 |
+
@classmethod
|
943 |
+
def INPUT_TYPES(s):
|
944 |
+
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
945 |
+
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
946 |
+
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
947 |
+
"crop": (s.crop_methods,)}}
|
948 |
+
RETURN_TYPES = ("IMAGE",)
|
949 |
+
FUNCTION = "upscale"
|
950 |
+
|
951 |
+
CATEGORY = "image/upscaling"
|
952 |
+
|
953 |
+
def upscale(self, image, upscale_method, width, height, crop):
|
954 |
+
samples = image.movedim(-1,1)
|
955 |
+
s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
|
956 |
+
s = s.movedim(1,-1)
|
957 |
+
return (s,)
|
958 |
+
|
959 |
+
class ImageInvert:
|
960 |
+
|
961 |
+
@classmethod
|
962 |
+
def INPUT_TYPES(s):
|
963 |
+
return {"required": { "image": ("IMAGE",)}}
|
964 |
+
|
965 |
+
RETURN_TYPES = ("IMAGE",)
|
966 |
+
FUNCTION = "invert"
|
967 |
+
|
968 |
+
CATEGORY = "image"
|
969 |
+
|
970 |
+
def invert(self, image):
|
971 |
+
s = 1.0 - image
|
972 |
+
return (s,)
|
973 |
+
|
974 |
+
|
975 |
+
class ImagePadForOutpaint:
|
976 |
+
|
977 |
+
@classmethod
|
978 |
+
def INPUT_TYPES(s):
|
979 |
+
return {
|
980 |
+
"required": {
|
981 |
+
"image": ("IMAGE",),
|
982 |
+
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
|
983 |
+
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
|
984 |
+
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
|
985 |
+
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
|
986 |
+
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
987 |
+
}
|
988 |
+
}
|
989 |
+
|
990 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
991 |
+
FUNCTION = "expand_image"
|
992 |
+
|
993 |
+
CATEGORY = "image"
|
994 |
+
|
995 |
+
def expand_image(self, image, left, top, right, bottom, feathering):
|
996 |
+
d1, d2, d3, d4 = image.size()
|
997 |
+
|
998 |
+
new_image = torch.zeros(
|
999 |
+
(d1, d2 + top + bottom, d3 + left + right, d4),
|
1000 |
+
dtype=torch.float32,
|
1001 |
+
)
|
1002 |
+
new_image[:, top:top + d2, left:left + d3, :] = image
|
1003 |
+
|
1004 |
+
mask = torch.ones(
|
1005 |
+
(d2 + top + bottom, d3 + left + right),
|
1006 |
+
dtype=torch.float32,
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
t = torch.zeros(
|
1010 |
+
(d2, d3),
|
1011 |
+
dtype=torch.float32
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
|
1015 |
+
|
1016 |
+
for i in range(d2):
|
1017 |
+
for j in range(d3):
|
1018 |
+
dt = i if top != 0 else d2
|
1019 |
+
db = d2 - i if bottom != 0 else d2
|
1020 |
+
|
1021 |
+
dl = j if left != 0 else d3
|
1022 |
+
dr = d3 - j if right != 0 else d3
|
1023 |
+
|
1024 |
+
d = min(dt, db, dl, dr)
|
1025 |
+
|
1026 |
+
if d >= feathering:
|
1027 |
+
continue
|
1028 |
+
|
1029 |
+
v = (feathering - d) / feathering
|
1030 |
+
|
1031 |
+
t[i, j] = v * v
|
1032 |
+
|
1033 |
+
mask[top:top + d2, left:left + d3] = t
|
1034 |
+
|
1035 |
+
return (new_image, mask)
|
1036 |
+
|
1037 |
+
|
1038 |
+
NODE_CLASS_MAPPINGS = {
|
1039 |
+
"KSampler": KSampler,
|
1040 |
+
"CheckpointLoader": CheckpointLoader,
|
1041 |
+
"CheckpointLoaderSimple": CheckpointLoaderSimple,
|
1042 |
+
"CLIPTextEncode": CLIPTextEncode,
|
1043 |
+
"CLIPSetLastLayer": CLIPSetLastLayer,
|
1044 |
+
"VAEDecode": VAEDecode,
|
1045 |
+
"VAEEncode": VAEEncode,
|
1046 |
+
"VAEEncodeForInpaint": VAEEncodeForInpaint,
|
1047 |
+
"VAELoader": VAELoader,
|
1048 |
+
"EmptyLatentImage": EmptyLatentImage,
|
1049 |
+
"LatentUpscale": LatentUpscale,
|
1050 |
+
"SaveImage": SaveImage,
|
1051 |
+
"PreviewImage": PreviewImage,
|
1052 |
+
"LoadImage": LoadImage,
|
1053 |
+
"LoadImageMask": LoadImageMask,
|
1054 |
+
"ImageScale": ImageScale,
|
1055 |
+
"ImageInvert": ImageInvert,
|
1056 |
+
"ImagePadForOutpaint": ImagePadForOutpaint,
|
1057 |
+
"ConditioningCombine": ConditioningCombine,
|
1058 |
+
"ConditioningSetArea": ConditioningSetArea,
|
1059 |
+
"KSamplerAdvanced": KSamplerAdvanced,
|
1060 |
+
"SetLatentNoiseMask": SetLatentNoiseMask,
|
1061 |
+
"LatentComposite": LatentComposite,
|
1062 |
+
"LatentRotate": LatentRotate,
|
1063 |
+
"LatentFlip": LatentFlip,
|
1064 |
+
"LatentCrop": LatentCrop,
|
1065 |
+
"LoraLoader": LoraLoader,
|
1066 |
+
"CLIPLoader": CLIPLoader,
|
1067 |
+
"CLIPVisionEncode": CLIPVisionEncode,
|
1068 |
+
"StyleModelApply": StyleModelApply,
|
1069 |
+
"unCLIPConditioning": unCLIPConditioning,
|
1070 |
+
"ControlNetApply": ControlNetApply,
|
1071 |
+
"ControlNetLoader": ControlNetLoader,
|
1072 |
+
"DiffControlNetLoader": DiffControlNetLoader,
|
1073 |
+
"StyleModelLoader": StyleModelLoader,
|
1074 |
+
"CLIPVisionLoader": CLIPVisionLoader,
|
1075 |
+
"VAEDecodeTiled": VAEDecodeTiled,
|
1076 |
+
"VAEEncodeTiled": VAEEncodeTiled,
|
1077 |
+
"TomePatchModel": TomePatchModel,
|
1078 |
+
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
1079 |
+
}
|
1080 |
+
|
1081 |
+
def load_custom_node(module_path):
|
1082 |
+
module_name = os.path.basename(module_path)
|
1083 |
+
if os.path.isfile(module_path):
|
1084 |
+
sp = os.path.splitext(module_path)
|
1085 |
+
module_name = sp[0]
|
1086 |
+
try:
|
1087 |
+
if os.path.isfile(module_path):
|
1088 |
+
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
1089 |
+
else:
|
1090 |
+
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
|
1091 |
+
module = importlib.util.module_from_spec(module_spec)
|
1092 |
+
sys.modules[module_name] = module
|
1093 |
+
module_spec.loader.exec_module(module)
|
1094 |
+
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
1095 |
+
NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
|
1096 |
+
else:
|
1097 |
+
print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
|
1098 |
+
except Exception as e:
|
1099 |
+
print(traceback.format_exc())
|
1100 |
+
print(f"Cannot import {module_path} module for custom nodes:", e)
|
1101 |
+
|
1102 |
+
def load_custom_nodes():
|
1103 |
+
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
|
1104 |
+
possible_modules = os.listdir(CUSTOM_NODE_PATH)
|
1105 |
+
if "__pycache__" in possible_modules:
|
1106 |
+
possible_modules.remove("__pycache__")
|
1107 |
+
|
1108 |
+
for possible_module in possible_modules:
|
1109 |
+
module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
|
1110 |
+
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
1111 |
+
load_custom_node(module_path)
|
1112 |
+
|
1113 |
+
def init_custom_nodes():
|
1114 |
+
load_custom_nodes()
|
1115 |
+
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchdiffeq
|
3 |
+
torchsde
|
4 |
+
einops
|
5 |
+
open-clip-torch
|
6 |
+
transformers>=4.25.1
|
7 |
+
safetensors
|
8 |
+
pytorch_lightning
|
9 |
+
aiohttp
|
10 |
+
accelerate
|
11 |
+
pyyaml
|
server.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import asyncio
|
4 |
+
import nodes
|
5 |
+
import folder_paths
|
6 |
+
import execution
|
7 |
+
import uuid
|
8 |
+
import json
|
9 |
+
import glob
|
10 |
+
try:
|
11 |
+
import aiohttp
|
12 |
+
from aiohttp import web
|
13 |
+
except ImportError:
|
14 |
+
print("Module 'aiohttp' not installed. Please install it via:")
|
15 |
+
print("pip install aiohttp")
|
16 |
+
print("or")
|
17 |
+
print("pip install -r requirements.txt")
|
18 |
+
sys.exit()
|
19 |
+
|
20 |
+
import mimetypes
|
21 |
+
|
22 |
+
|
23 |
+
@web.middleware
|
24 |
+
async def cache_control(request: web.Request, handler):
|
25 |
+
response: web.Response = await handler(request)
|
26 |
+
if request.path.endswith('.js') or request.path.endswith('.css'):
|
27 |
+
response.headers.setdefault('Cache-Control', 'no-cache')
|
28 |
+
return response
|
29 |
+
|
30 |
+
class PromptServer():
|
31 |
+
def __init__(self, loop):
|
32 |
+
PromptServer.instance = self
|
33 |
+
|
34 |
+
mimetypes.init();
|
35 |
+
mimetypes.types_map['.js'] = 'application/javascript; charset=utf-8'
|
36 |
+
self.prompt_queue = None
|
37 |
+
self.loop = loop
|
38 |
+
self.messages = asyncio.Queue()
|
39 |
+
self.number = 0
|
40 |
+
self.app = web.Application(client_max_size=20971520, middlewares=[cache_control])
|
41 |
+
self.sockets = dict()
|
42 |
+
self.web_root = os.path.join(os.path.dirname(
|
43 |
+
os.path.realpath(__file__)), "web")
|
44 |
+
routes = web.RouteTableDef()
|
45 |
+
self.routes = routes
|
46 |
+
self.last_node_id = None
|
47 |
+
self.client_id = None
|
48 |
+
|
49 |
+
@routes.get('/ws')
|
50 |
+
async def websocket_handler(request):
|
51 |
+
ws = web.WebSocketResponse()
|
52 |
+
await ws.prepare(request)
|
53 |
+
sid = request.rel_url.query.get('clientId', '')
|
54 |
+
if sid:
|
55 |
+
# Reusing existing session, remove old
|
56 |
+
self.sockets.pop(sid, None)
|
57 |
+
else:
|
58 |
+
sid = uuid.uuid4().hex
|
59 |
+
|
60 |
+
self.sockets[sid] = ws
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Send initial state to the new client
|
64 |
+
await self.send("status", { "status": self.get_queue_info(), 'sid': sid }, sid)
|
65 |
+
# On reconnect if we are the currently executing client send the current node
|
66 |
+
if self.client_id == sid and self.last_node_id is not None:
|
67 |
+
await self.send("executing", { "node": self.last_node_id }, sid)
|
68 |
+
|
69 |
+
async for msg in ws:
|
70 |
+
if msg.type == aiohttp.WSMsgType.ERROR:
|
71 |
+
print('ws connection closed with exception %s' % ws.exception())
|
72 |
+
finally:
|
73 |
+
self.sockets.pop(sid, None)
|
74 |
+
return ws
|
75 |
+
|
76 |
+
@routes.get("/")
|
77 |
+
async def get_root(request):
|
78 |
+
return web.FileResponse(os.path.join(self.web_root, "index.html"))
|
79 |
+
|
80 |
+
@routes.get("/embeddings")
|
81 |
+
def get_embeddings(self):
|
82 |
+
embeddings = folder_paths.get_filename_list("embeddings")
|
83 |
+
return web.json_response(list(map(lambda a: os.path.splitext(a)[0].lower(), embeddings)))
|
84 |
+
|
85 |
+
@routes.get("/extensions")
|
86 |
+
async def get_extensions(request):
|
87 |
+
files = glob.glob(os.path.join(self.web_root, 'extensions/**/*.js'), recursive=True)
|
88 |
+
return web.json_response(list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files)))
|
89 |
+
|
90 |
+
@routes.post("/upload/image")
|
91 |
+
async def upload_image(request):
|
92 |
+
upload_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
93 |
+
|
94 |
+
if not os.path.exists(upload_dir):
|
95 |
+
os.makedirs(upload_dir)
|
96 |
+
|
97 |
+
post = await request.post()
|
98 |
+
image = post.get("image")
|
99 |
+
|
100 |
+
if image and image.file:
|
101 |
+
filename = image.filename
|
102 |
+
if not filename:
|
103 |
+
return web.Response(status=400)
|
104 |
+
|
105 |
+
split = os.path.splitext(filename)
|
106 |
+
i = 1
|
107 |
+
while os.path.exists(os.path.join(upload_dir, filename)):
|
108 |
+
filename = f"{split[0]} ({i}){split[1]}"
|
109 |
+
i += 1
|
110 |
+
|
111 |
+
filepath = os.path.join(upload_dir, filename)
|
112 |
+
|
113 |
+
with open(filepath, "wb") as f:
|
114 |
+
f.write(image.file.read())
|
115 |
+
|
116 |
+
return web.json_response({"name" : filename})
|
117 |
+
else:
|
118 |
+
return web.Response(status=400)
|
119 |
+
|
120 |
+
|
121 |
+
@routes.get("/view")
|
122 |
+
async def view_image(request):
|
123 |
+
if "filename" in request.rel_url.query:
|
124 |
+
type = request.rel_url.query.get("type", "output")
|
125 |
+
if type not in ["output", "input", "temp"]:
|
126 |
+
return web.Response(status=400)
|
127 |
+
|
128 |
+
output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), type)
|
129 |
+
if "subfolder" in request.rel_url.query:
|
130 |
+
full_output_dir = os.path.join(output_dir, request.rel_url.query["subfolder"])
|
131 |
+
if os.path.commonpath((os.path.abspath(full_output_dir), output_dir)) != output_dir:
|
132 |
+
return web.Response(status=403)
|
133 |
+
output_dir = full_output_dir
|
134 |
+
|
135 |
+
filename = request.rel_url.query["filename"]
|
136 |
+
filename = os.path.basename(filename)
|
137 |
+
file = os.path.join(output_dir, filename)
|
138 |
+
|
139 |
+
if os.path.isfile(file):
|
140 |
+
return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""})
|
141 |
+
|
142 |
+
return web.Response(status=404)
|
143 |
+
|
144 |
+
@routes.get("/prompt")
|
145 |
+
async def get_prompt(request):
|
146 |
+
return web.json_response(self.get_queue_info())
|
147 |
+
|
148 |
+
@routes.get("/object_info")
|
149 |
+
async def get_object_info(request):
|
150 |
+
out = {}
|
151 |
+
for x in nodes.NODE_CLASS_MAPPINGS:
|
152 |
+
obj_class = nodes.NODE_CLASS_MAPPINGS[x]
|
153 |
+
info = {}
|
154 |
+
info['input'] = obj_class.INPUT_TYPES()
|
155 |
+
info['output'] = obj_class.RETURN_TYPES
|
156 |
+
info['output_name'] = obj_class.RETURN_NAMES if hasattr(obj_class, 'RETURN_NAMES') else info['output']
|
157 |
+
info['name'] = x #TODO
|
158 |
+
info['description'] = ''
|
159 |
+
info['category'] = 'sd'
|
160 |
+
if hasattr(obj_class, 'CATEGORY'):
|
161 |
+
info['category'] = obj_class.CATEGORY
|
162 |
+
out[x] = info
|
163 |
+
return web.json_response(out)
|
164 |
+
|
165 |
+
@routes.get("/history")
|
166 |
+
async def get_history(request):
|
167 |
+
return web.json_response(self.prompt_queue.get_history())
|
168 |
+
|
169 |
+
@routes.get("/queue")
|
170 |
+
async def get_queue(request):
|
171 |
+
queue_info = {}
|
172 |
+
current_queue = self.prompt_queue.get_current_queue()
|
173 |
+
queue_info['queue_running'] = current_queue[0]
|
174 |
+
queue_info['queue_pending'] = current_queue[1]
|
175 |
+
return web.json_response(queue_info)
|
176 |
+
|
177 |
+
@routes.post("/prompt")
|
178 |
+
async def post_prompt(request):
|
179 |
+
print("got prompt")
|
180 |
+
resp_code = 200
|
181 |
+
out_string = ""
|
182 |
+
json_data = await request.json()
|
183 |
+
|
184 |
+
if "number" in json_data:
|
185 |
+
number = float(json_data['number'])
|
186 |
+
else:
|
187 |
+
number = self.number
|
188 |
+
if "front" in json_data:
|
189 |
+
if json_data['front']:
|
190 |
+
number = -number
|
191 |
+
|
192 |
+
self.number += 1
|
193 |
+
|
194 |
+
if "prompt" in json_data:
|
195 |
+
prompt = json_data["prompt"]
|
196 |
+
valid = execution.validate_prompt(prompt)
|
197 |
+
extra_data = {}
|
198 |
+
if "extra_data" in json_data:
|
199 |
+
extra_data = json_data["extra_data"]
|
200 |
+
|
201 |
+
if "client_id" in json_data:
|
202 |
+
extra_data["client_id"] = json_data["client_id"]
|
203 |
+
if valid[0]:
|
204 |
+
self.prompt_queue.put((number, id(prompt), prompt, extra_data))
|
205 |
+
else:
|
206 |
+
resp_code = 400
|
207 |
+
out_string = valid[1]
|
208 |
+
print("invalid prompt:", valid[1])
|
209 |
+
|
210 |
+
return web.Response(body=out_string, status=resp_code)
|
211 |
+
|
212 |
+
@routes.post("/queue")
|
213 |
+
async def post_queue(request):
|
214 |
+
json_data = await request.json()
|
215 |
+
if "clear" in json_data:
|
216 |
+
if json_data["clear"]:
|
217 |
+
self.prompt_queue.wipe_queue()
|
218 |
+
if "delete" in json_data:
|
219 |
+
to_delete = json_data['delete']
|
220 |
+
for id_to_delete in to_delete:
|
221 |
+
delete_func = lambda a: a[1] == int(id_to_delete)
|
222 |
+
self.prompt_queue.delete_queue_item(delete_func)
|
223 |
+
|
224 |
+
return web.Response(status=200)
|
225 |
+
|
226 |
+
@routes.post("/interrupt")
|
227 |
+
async def post_interrupt(request):
|
228 |
+
nodes.interrupt_processing()
|
229 |
+
return web.Response(status=200)
|
230 |
+
|
231 |
+
@routes.post("/history")
|
232 |
+
async def post_history(request):
|
233 |
+
json_data = await request.json()
|
234 |
+
if "clear" in json_data:
|
235 |
+
if json_data["clear"]:
|
236 |
+
self.prompt_queue.wipe_history()
|
237 |
+
if "delete" in json_data:
|
238 |
+
to_delete = json_data['delete']
|
239 |
+
for id_to_delete in to_delete:
|
240 |
+
self.prompt_queue.delete_history_item(id_to_delete)
|
241 |
+
|
242 |
+
return web.Response(status=200)
|
243 |
+
|
244 |
+
def add_routes(self):
|
245 |
+
self.app.add_routes(self.routes)
|
246 |
+
self.app.add_routes([
|
247 |
+
web.static('/', self.web_root),
|
248 |
+
])
|
249 |
+
|
250 |
+
def get_queue_info(self):
|
251 |
+
prompt_info = {}
|
252 |
+
exec_info = {}
|
253 |
+
exec_info['queue_remaining'] = self.prompt_queue.get_tasks_remaining()
|
254 |
+
prompt_info['exec_info'] = exec_info
|
255 |
+
return prompt_info
|
256 |
+
|
257 |
+
async def send(self, event, data, sid=None):
|
258 |
+
message = {"type": event, "data": data}
|
259 |
+
|
260 |
+
if isinstance(message, str) == False:
|
261 |
+
message = json.dumps(message)
|
262 |
+
|
263 |
+
if sid is None:
|
264 |
+
for ws in self.sockets.values():
|
265 |
+
await ws.send_str(message)
|
266 |
+
elif sid in self.sockets:
|
267 |
+
await self.sockets[sid].send_str(message)
|
268 |
+
|
269 |
+
def send_sync(self, event, data, sid=None):
|
270 |
+
self.loop.call_soon_threadsafe(
|
271 |
+
self.messages.put_nowait, (event, data, sid))
|
272 |
+
|
273 |
+
def queue_updated(self):
|
274 |
+
self.send_sync("status", { "status": self.get_queue_info() })
|
275 |
+
|
276 |
+
async def publish_loop(self):
|
277 |
+
while True:
|
278 |
+
msg = await self.messages.get()
|
279 |
+
await self.send(*msg)
|
280 |
+
|
281 |
+
async def start(self, address, port, verbose=True, call_on_start=None):
|
282 |
+
runner = web.AppRunner(self.app)
|
283 |
+
await runner.setup()
|
284 |
+
site = web.TCPSite(runner, address, port)
|
285 |
+
await site.start()
|
286 |
+
|
287 |
+
if address == '':
|
288 |
+
address = '0.0.0.0'
|
289 |
+
if verbose:
|
290 |
+
print("Starting server\n")
|
291 |
+
print("To see the GUI go to: http://{}:{}".format(address, port))
|
292 |
+
if call_on_start is not None:
|
293 |
+
call_on_start(address, port)
|
294 |
+
|