Gggggggcccc / app.py
jnjj's picture
Create app.py
632280e verified
import os
import gc
import json
import random
import torch
import asyncio
import logging
import time
from typing import List, Dict, Any, Optional, Union, AsyncGenerator, Tuple
from fastapi import FastAPI, HTTPException, Query, Request, Depends, status
from fastapi.responses import StreamingResponse, PlainTextResponse, HTMLResponse, JSONResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel, Field, ValidationError, validator
from transformers import (
AutoConfig, AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, LogitsProcessorList,
MinLengthLogitsProcessor, MaxLengthCriteria,
StoppingCriteriaList, StoppingCriteria
)
import uvicorn
from concurrent.futures import ThreadPoolExecutor
import math
import torch.nn.functional as F
import copy
app = FastAPI(title="Chatbot Profesional Profesional API", version="1.0.0")
class StopSequenceCriteria(StoppingCriteria):
def __init__(self, stop_sequences: List[str], tokenizer: AutoTokenizer):
self.tokenizer = tokenizer
self.stop_sequences_text = []
self.stop_sequence_ids = []
for seq in stop_sequences:
if seq:
encoded_ids = tokenizer.encode(seq, add_special_tokens=False)
decoded_text = tokenizer.decode(encoded_ids, skip_special_tokens=True)
if decoded_text:
self.stop_sequences_text.append(decoded_text)
self.stop_sequence_ids.append(encoded_ids)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if not self.stop_sequence_ids:
return False
input_ids_list = input_ids[0].tolist()
for stop_seq_ids in self.stop_sequence_ids:
stop_len = len(stop_seq_ids)
if len(input_ids_list) >= stop_len:
if input_ids_list[-stop_len:] == stop_seq_ids:
return True
check_tail_len = 50
if self.stop_sequence_ids:
max_stop_seq_token_len = max((len(seq) for seq in self.stop_sequence_ids), default=0)
check_tail_len = max(check_tail_len, max_stop_seq_token_len + 10)
tail_ids = input_ids_list[-min(check_tail_len, len(input_ids_list)):]
tail_text = self.tokenizer.decode(tail_ids, skip_special_tokens=True)
for stop_seq_text in self.stop_sequences_text:
if stop_seq_text and stop_seq_text in tail_text:
return True
return False
logging.getLogger("uvicorn").handlers.clear()
logging.getLogger("uvicorn.error").handlers.clear()
logging.getLogger("uvicorn.access").handlers.clear()
logging.getLogger("uvicorn").propagate = False
logging.getLogger("uvicorn.error").propagate = False
logging.getLogger("uvicorn.access").propagate = False
logging.getLogger("uvicorn").setLevel(logging.CRITICAL)
logging.getLogger("uvicorn.error").setLevel(logging.CRITICAL)
logging.getLogger("uvicorn.access").setLevel(logging.CRITICAL)
logging.getLogger("fastapi").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
logging.getLogger().handlers.clear()
logging.getLogger().addHandler(logging.NullHandler())
DEFAULT_MODEL_NAME = "jnjj/gemma-3-1b-it-qat-int4-quantized-less-restricted-filtered-sf"
MODEL_NAME = os.environ.get("MODEL_NAME", DEFAULT_MODEL_NAME)
SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", "Eres un asistente profesional y servicial.")
try:
MAX_CONTEXT_TOKENS = int(os.environ.get("MAX_CONTEXT_TOKENS", 1024))
if MAX_CONTEXT_TOKENS <= 0:
raise ValueError("MAX_CONTEXT_TOKENS must be positive.")
except (ValueError, TypeError) as e:
MAX_CONTEXT_TOKENS = 1024
try:
MAX_GENERATION_TOKENS = int(os.environ.get("MAX_GENERATION_TOKENS", 512))
if MAX_GENERATION_TOKENS <= 0:
raise ValueError("MAX_GENERATION_TOKENS must be positive.")
except (ValueError, TypeError) as e:
MAX_GENERATION_TOKENS = 512
try:
MAX_CONCURRENT_GENERATIONS = int(os.environ.get("MAX_CONCURRENT_GENERATIONS", 4))
if MAX_CONCURRENT_GENERATIONS <= 0:
raise ValueError("MAX_CONCURRENT_GENERATIONS must be positive.")
except (ValueError, TypeError) as e:
MAX_CONCURRENT_GENERATIONS = 4
TRUST_REMOTE_CODE = (MODEL_NAME == DEFAULT_MODEL_NAME)
TORCH_DTYPE = torch.float32
API_KEY = os.environ.get("API_KEY")
global_model = None
global_tokenizer = None
global_tokens: Dict[str, Optional[int]] = {}
executor = ThreadPoolExecutor(max_workers=MAX_CONCURRENT_GENERATIONS)
generation_semaphore = asyncio.Semaphore(MAX_CONCURRENT_GENERATIONS)
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def get_api_key(api_key: str = Depends(api_key_header)):
if API_KEY is None:
return
if api_key is None or api_key != API_KEY:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid or missing API Key")
return api_key
class GenerateRequest(BaseModel):
input_text: str = Field(...)
history: Optional[List[Dict[str, str]]] = Field(None)
stream: bool = Field(True)
temperature: float = Field(1.0, ge=0.0, le=2.0)
top_k: int = Field(50, ge=0)
top_p: float = Field(1.0, ge=0.0, le=1.0)
repetition_penalty: float = Field(1.0, ge=0.0)
frequency_penalty: float = Field(0.0, ge=0.0)
presence_penalty: float = Field(0.0, ge=0.0)
num_beams: int = Field(1, ge=1)
length_penalty: float = Field(1.0, ge=0.0)
no_repeat_ngram_size: int = Field(0, ge=0)
early_stopping: bool = Field(False)
do_sample: bool = Field(True)
use_mirostat: bool = Field(False)
mirostat_tau: float = Field(5.0, ge=0.0)
mirostat_eta: float = Field(0.1, ge=0.0)
max_new_tokens: int = Field(MAX_GENERATION_TOKENS, ge=1)
system_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
stop_sequences: Optional[List[str]] = Field(None)
tokenize_only: bool = Field(False)
strip_trailing_whitespace: bool = Field(False)
remove_incomplete_sentences: bool = Field(False)
num_return_sequences: int = Field(1, ge=1, le=5)
bad_words_ids: Optional[List[List[int]]] = Field(None)
forced_bos_token_id: Optional[int] = Field(None)
forced_eos_token_id: Optional[int] = Field(None)
renormalize_logits: Optional[bool] = Field(None)
suppress_tokens: Optional[List[int]] = Field(None)
begin_suppress_tokens: Optional[List[int]] = Field(None)
end_suppress_tokens: Optional[List[int]] = Field(None)
encoder_no_repeat_ngram_size: int = Field(0, ge=0)
min_length: int = Field(0, ge=0)
max_length: Optional[int] = Field(None)
exponential_decay_length_penalty: Optional[Tuple[float, int, float]] = Field(None)
use_cache: bool = Field(True)
typical_p: float = Field(1.0, ge=0.0, le=1.0)
epsilon_cutoff: float = Field(0.0, ge=0.0)
eta_cutoff: float = Field(0.0, ge=0.0)
temperature_cutoff: Optional[float] = Field(None, ge=0.0)
encoder_repetition_penalty: float = Field(1.0, ge=0.0)
max_time: Optional[float] = Field(None, ge=0.0)
output_watermark: bool = Field(False)
remove_input_from_output: bool = Field(False)
eos_token_id_override: Optional[int] = Field(None)
pad_token_id_override: Optional[int] = Field(None)
bos_token_id_override: Optional[int] = Field(None)
repetition_penalty_range: Optional[int] = Field(None, ge=0)
diversity_penalty: float = Field(0.0, ge=0.0)
num_beam_groups: int = Field(1, ge=1)
return_dict_in_generate: bool = Field(False)
output_attentions: bool = Field(False)
output_hidden_states: bool = Field(False)
output_scores: bool = Field(False)
return_token_logprobs: bool = Field(False)
return_text_from_sequence: bool = Field(True)
length_normalization_factor: Optional[float] = Field(None)
min_new_tokens: int = Field(0, ge=0)
do_normalize_logits: bool = Field(False)
return_generation_inputs: bool = Field(False)
return_unused_generate_parameters: bool = Field(False)
use_fast_tokenizer: bool = Field(True)
model_kwargs: Optional[Dict[str, Any]] = Field(None)
tokenizer_kwargs: Optional[Dict[str, Any]] = Field(None)
return_only_text: bool = Field(False)
@validator('stop_sequences')
def validate_stop_sequences(cls, v):
if v is not None:
if not all(isinstance(seq, str) for seq in v):
raise ValueError('Each stop sequence must be a string')
return v
@validator('bad_words_ids')
def validate_bad_words_ids(cls, v):
if v is not None:
if not all(isinstance(word_id_list, list) and all(isinstance(token_id, int) for token_id in word_id_list) for word_id_list in v):
raise ValueError('bad_words_ids must be a list of lists of integers')
return v
@validator('exponential_decay_length_penalty')
def validate_exponential_decay_length_penalty(cls, v):
if v is not None:
if not (isinstance(v, (list, tuple)) and len(v) == 3 and
isinstance(v[0], (int, float)) and v[0] > 0 and
isinstance(v[1], int) and v[1] >= 0 and
isinstance(v[2], (int, float))):
raise ValueError('exponential_decay_length_penalty must be a tuple/list of 3 numbers (decay_factor, start_index, threshold)')
return v
def format_conversation(input_text: str, history: Optional[List[Dict[str, str]]], system_prompt: Optional[str]) -> str:
full_history: List[Dict[str, str]] = []
used_system_prompt = system_prompt if system_prompt is not None else SYSTEM_PROMPT
if not history or history[0].get("role") != "system" or history[0].get("content") != used_system_prompt:
full_history.append({"role": "system", "content": used_system_prompt})
if history:
full_history.extend(history)
if not full_history or full_history[-1].get("role") != "user" or full_history[-1].get("content") != input_text:
full_history.append({"role": "user", "content": input_text})
if global_tokenizer and hasattr(global_tokenizer, 'apply_chat_template') and global_tokenizer.chat_template:
try:
return global_tokenizer.apply_chat_template(full_history, tokenize=False, add_generation_prompt=True)
except Exception as e:
pass
formatted_text = ""
for i, message in enumerate(full_history):
if i == 0 and message["role"] == "system" and len(full_history) > 1 and full_history[1].get("role") == "system":
continue
if message["role"] == "system":
formatted_text += f"{message['content'].strip()}\n\n"
elif message["role"] == "user":
formatted_text += f"Usuario: {message['content'].strip()}\n"
elif message["role"] == "assistant":
formatted_text += f"Bot: {message['content'].strip()}\n"
if not formatted_text.endswith("Bot:"):
formatted_text += "Bot:"
return formatted_text.strip()
def truncate_encoded_ids(input_ids: torch.Tensor, max_length: int) -> torch.Tensor:
if input_ids.shape[-1] > max_length:
return input_ids[:, -max_length:]
return input_ids
def apply_seed(seed: Optional[int]):
if seed is not None:
torch.manual_seed(seed)
random.seed(seed)
def get_stopping_criteria(req: GenerateRequest, initial_ids: torch.Tensor, tokenizer: AutoTokenizer) -> StoppingCriteriaList:
criteria = StoppingCriteriaList()
max_len_from_req = None
if req.max_length is not None and req.max_length > 0:
max_len_from_req = req.max_length
elif req.max_new_tokens is not None and req.max_new_tokens > 0:
max_len_from_req = initial_ids.shape[-1] + req.max_new_tokens
else:
max_len_from_req = initial_ids.shape[-1] + MAX_GENERATION_TOKENS
if max_len_from_req is not None and max_len_from_req > 0:
criteria.append(MaxLengthCriteria(max_len_from_req))
if req.min_length is not None and req.min_length > 0:
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id", -1)
criteria.append(MinLengthLogitsProcessor(initial_ids.shape[-1] + req.min_length, eos_token_id))
if req.stop_sequences:
criteria.append(StopSequenceCriteria(req.stop_sequences, tokenizer))
return criteria
def generate_next_token_sync(
input_ids,
past_key_values,
gen_cfg: GenerationConfig,
device: str
) -> Tuple[torch.Tensor, Any, Optional[float], Optional[torch.Tensor], Any, Any]:
with torch.no_grad():
outputs = global_model(
input_ids, past_key_values=past_key_values,
use_cache=gen_cfg.use_cache, return_dict=True,
output_attentions=gen_cfg.output_attentions,
output_hidden_states=gen_cfg.output_hidden_states,
output_scores=gen_cfg.output_scores,
)
logits = outputs.logits[:, -1, :]
past = outputs.past_key_values
scores = outputs.scores if gen_cfg.output_scores else None
attentions = outputs.attentions if gen_cfg.output_attentions else None
hidden_states = outputs.hidden_states if gen_cfg.output_hidden_states else None
step_logits_for_criteria = logits.clone()
if gen_cfg.do_normalize_logits:
logits = F.log_softmax(logits, dim=-1)
if gen_cfg.do_sample:
if gen_cfg.use_mirostat_mode == 1 and hasattr(global_model, 'mirostat_sample_logits'):
token = global_model.mirostat_sample_logits(
logits=logits,
temperature=gen_cfg.temperature,
mirostat_tau=gen_cfg.mirostat_tau,
mirostat_eta=gen_cfg.mirostat_eta
).unsqueeze(0).to(device)
else:
logits = logits / gen_cfg.temperature
if gen_cfg.temperature_cutoff is not None and gen_cfg.temperature_cutoff > 0:
logits = torch.where(logits < gen_cfg.temperature_cutoff, torch.tensor(-float('Inf')).to(logits.device), logits)
if gen_cfg.top_k:
topk_values, topk_indices = torch.topk(logits, gen_cfg.top_k)
logits[logits < topk_values[:, -1]] = -float('Inf')
if gen_cfg.top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > gen_cfg.top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = False
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = -float('Inf')
if gen_cfg.typical_p < 1.0:
probs = torch.softmax(logits, dim=-1)
entropy = torch.distributions.Categorical(probs).entropy()
probs_sorted, indices_sorted = torch.sort(probs, dim=-1, descending=True)
cumsum_probs_sorted = torch.cumsum(probs_sorted, dim=-1)
mask = cumsum_probs_sorted < gen_cfg.typical_p * entropy.exp()
indices_to_remove = indices_sorted[~mask]
logits[:, indices_to_remove] = -float('Inf')
if gen_cfg.epsilon_cutoff is not None and gen_cfg.epsilon_cutoff > 0:
probs = torch.softmax(logits, dim=-1)
mask = probs < gen_cfg.epsilon_cutoff
logits[:, mask] = -float('Inf')
if gen_cfg.eta_cutoff is not None and gen_cfg.eta_cutoff > 0:
probs = torch.softmax(logits, dim=-1)
mask = probs > gen_cfg.eta_cutoff
logits[:, ~mask] = -float('Inf')
probs = torch.softmax(logits, dim=-1)
token = torch.multinomial(probs, 1)
else:
token = torch.argmax(logits, dim=-1, keepdim=True)
token_logprob = None
if gen_cfg.output_scores:
log_probs = F.log_softmax(step_logits_for_criteria, dim=-1)
if 0 <= token.squeeze().item() < log_probs.shape[-1]:
token_logprob = float(log_probs[:, token.squeeze()].item())
else:
token_logprob = None
return token, past, token_logprob, step_logits_for_criteria, attentions, hidden_states
def post_process_text(text: str, strip_trailing_whitespace: bool, remove_incomplete_sentences: bool) -> str:
if strip_trailing_whitespace:
text = text.rstrip()
if remove_incomplete_sentences:
for terminator in ['.', '!', '?', '\n']:
last_terminator = text.rfind(terminator)
if last_terminator != -1:
text = text[:last_terminator + 1]
break
return text
async def stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> AsyncGenerator[Union[str, Tuple[Dict[str, Any], str]], None]:
past = None
generated_tokens_count = 0
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id")
pad_token_id = req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id", eos_token_id)
stop_token_ids = {eos_token_id} if eos_token_id is not None else set()
if pad_token_id is not None and pad_token_id != eos_token_id:
stop_token_ids.add(pad_token_id)
current_ids = initial_ids
start_time = time.time()
total_ids_list = initial_ids.tolist()[0]
finish_reason = "unknown"
stopping_criteria = get_stopping_criteria(req, initial_ids, global_tokenizer)
last_step_logits = None
accumulated_text_for_processing = ""
try:
while True:
if generated_tokens_count >= req.max_new_tokens:
finish_reason = "max_new_tokens"
break
if req.max_time is not None and (time.time() - start_time) > req.max_time:
finish_reason = "time"
break
input_ids_sync = current_ids if past is None else token
token, past, token_logprob, step_logits, attentions, hidden_states = await asyncio.to_thread(
generate_next_token_sync,
input_ids_sync,
past,
gen_cfg,
device
)
last_step_logits = step_logits
generated_token_id = token[0].item()
total_ids_list.append(generated_token_id)
text = global_tokenizer.decode([generated_token_id], skip_special_tokens=True)
accumulated_text_for_processing += text
if req.return_only_text:
yield text
else:
chunk_payload: Dict[str, Any] = {
"type": "token",
"text": text,
"token_id": generated_token_id,
"generated_tokens_count": generated_tokens_count + 1,
}
if req.return_token_logprobs and token_logprob is not None:
chunk_payload["logprob"] = token_logprob
yield json.dumps(chunk_payload) + "\n"
if generated_token_id in stop_token_ids:
finish_reason = "eos_token"
break
current_full_ids_tensor = torch.tensor([total_ids_list], device=device)
if stopping_criteria(current_full_ids_tensor, step_logits):
finish_reason = "stopping_criteria"
current_len = len(total_ids_list)
initial_len = initial_ids.shape[-1]
max_len_crit_met = any(isinstance(c, MaxLengthCriteria) for c in stopping_criteria) and \
( (req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens)) or
(req.max_length is not None and current_len >= req.max_length) )
stop_seq_crit_met = any(isinstance(c, StopSequenceCriteria) for c in stopping_criteria) and req.stop_sequences and \
any(seq in global_tokenizer.decode(total_ids_list[initial_len:], skip_special_tokens=True) for seq in req.stop_sequences)
if max_len_crit_met:
if req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens):
finish_reason = "max_new_tokens"
elif req.max_length is not None and current_len >= req.max_length:
finish_reason = "max_length"
if stop_seq_crit_met:
finish_reason = "stop_sequence"
break
current_ids = token
generated_tokens_count += 1
final_text_raw = global_tokenizer.decode(total_ids_list[initial_ids.shape[-1]:], skip_special_tokens=True)
if req.stop_sequences and finish_reason == "stop_sequence":
for stop_seq in req.stop_sequences:
if stop_seq and stop_seq in final_text_raw:
final_text_raw = final_text_raw.split(stop_seq, 1)[0]
break
final_text_processed = post_process_text(final_text_raw, req.strip_trailing_whitespace, req.remove_incomplete_sentences)
if not req.return_only_text:
final_payload: Dict[str, Any] = {
"type": "done",
"total_prompt_tokens": initial_ids.shape[-1],
"total_generated_tokens": generated_tokens_count,
"total_sequence_tokens": len(total_ids_list),
"final_text": final_text_processed,
"finish_reason": finish_reason
}
yield json.dumps(final_payload) + "\n"
except Exception as e:
if req.return_only_text:
yield f"Error: {e}\n"
else:
error_payload = {"type": "error", "message": str(e)}
yield json.dumps(error_payload) + "\n"
finally:
await cleanup()
async def non_stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> Dict[str, Any]:
try:
logits_processor_list = LogitsProcessorList()
stopping_criteria_list = get_stopping_criteria(req, initial_ids, global_tokenizer)
with torch.no_grad():
out = global_model.generate(
input_ids=initial_ids,
generation_config=gen_cfg,
return_dict_in_generate=True,
output_scores=req.output_scores,
output_attentions=req.output_attentions,
output_hidden_states=req.output_hidden_states,
num_return_sequences=req.num_return_sequences,
bad_words_ids=req.bad_words_ids,
suppress_tokens=req.suppress_tokens,
begin_suppress_tokens=req.begin_suppress_tokens,
end_suppress_tokens=req.end_suppress_tokens,
logits_processor=logits_processor_list if logits_processor_list else None,
stopping_criteria=stopping_criteria_list if stopping_criteria_list else None,
)
generated_data = []
for i in range(req.num_return_sequences):
if i >= len(out.sequences):
break
sequence = out.sequences[i]
start_index = initial_ids.shape[-1]
generated_ids_tensor = sequence[start_index:]
full_sequence_ids = sequence.tolist()
text = global_tokenizer.decode(generated_ids_tensor, skip_special_tokens=True)
if req.stop_sequences:
for stop_seq in req.stop_sequences:
if stop_seq and stop_seq in text:
text = text.split(stop_seq, 1)[0]
break
text = post_process_text(text, req.strip_trailing_whitespace, req.remove_incomplete_sentences)
finish_reason = "length"
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id")
if len(generated_ids_tensor) > 0 and eos_token_id is not None and generated_ids_tensor[-1] == eos_token_id:
finish_reason = "eos_token"
elif len(generated_ids_tensor) >= gen_cfg.max_new_tokens:
finish_reason = "max_new_tokens"
elif req.max_length is not None and len(full_sequence_ids) >= req.max_length:
finish_reason = "max_length"
elif hasattr(out, 'max_time_exceeded') and out.max_time_exceeded:
finish_reason = "time"
if req.stop_sequences and finish_reason == "length":
decoded_full_output = global_tokenizer.decode(full_sequence_ids, skip_special_tokens=True)
if any(seq in decoded_full_output for seq in req.stop_sequences):
finish_reason = "stop_sequence"
item_data: Dict[str, Any] = {
"text": text if req.return_text_from_sequence else None,
"token_ids": generated_ids_tensor.tolist(),
"generated_tokens_count": len(generated_ids_tensor),
"finish_reason": finish_reason
}
if not req.remove_input_from_output:
item_data["full_sequence_token_ids"] = full_sequence_ids
if req.output_scores and hasattr(out, 'scores') and out.scores is not None:
item_data["scores"] = "Scores output needs custom handling (complex structure)."
if req.return_token_logprobs:
item_data["token_logprobs"] = "Token logprobs require parsing scores output which is complex for batched/beamed generation."
if req.output_attentions and hasattr(out, 'attentions') and out.attentions is not None:
item_data["attentions"] = "Attentions output needs custom handling (too large)."
if req.output_hidden_states and hasattr(out, 'hidden_states') and out.hidden_states is not None:
item_data["hidden_states"] = "Hidden states output needs custom handling (too large)."
if hasattr(out, 'watermark') and out.watermark is not None:
item_data["watermark"] = out.watermark[i] if isinstance(out.watermark, list) and len(out.watermark) > i else out.watermark
generated_data.append(item_data)
response_payload: Dict[str, Any] = {
"prompt_tokens": initial_ids.shape[-1],
"generated_sequences": generated_data,
}
if req.num_return_sequences == 1 and generated_data:
response_payload["total_tokens"] = response_payload["prompt_tokens"] + generated_data[0]["generated_tokens_count"]
if req.return_dict_in_generate:
raw_out_dict = {}
for key in out.keys():
if key not in ['sequences', 'scores', 'attentions', 'hidden_states', 'past_key_values', 'watermark', 'sequences_scores']:
value = out[key]
if isinstance(value, torch.Tensor):
raw_out_dict[key] = value.tolist()
else:
raw_out_dict[key] = value
response_payload["raw_generate_output"] = raw_out_dict
return response_payload
except Exception as e:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}")
async def cleanup():
gc.collect()
@app.on_event("startup")
async def load_model():
global global_model, global_tokenizer, global_tokens, MODEL_NAME, TRUST_REMOTE_CODE, TORCH_DTYPE
torch.set_num_threads(max(1, os.cpu_count() // 2))
torch.set_num_interop_threads(max(1, os.cpu_count() // 4))
device = "cpu"
current_model_name = MODEL_NAME
current_trust_remote_code = TRUST_REMOTE_CODE
try:
config = AutoConfig.from_pretrained(current_model_name, trust_remote_code=current_trust_remote_code)
original_config = copy.deepcopy(config)
if hasattr(config, 'bos_token_id'):
config.bos_token_id = 1
if hasattr(config, 'eos_token_id'):
config.eos_token_id = 2
if hasattr(config, 'max_position_embeddings'):
config.max_position_embeddings = MAX_CONTEXT_TOKENS
if hasattr(config, 'n_positions'):
config.n_positions = MAX_CONTEXT_TOKENS
if hasattr(config, 'seq_len'):
config.seq_len = MAX_CONTEXT_TOKENS
if hasattr(config, 'ctx'):
config.ctx = MAX_CONTEXT_TOKENS
if hasattr(config, 'n_ctx'):
config.n_ctx = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_seq_length'):
config.max_seq_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_sequence_length'):
config.max_sequence_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_length'):
config.max_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'block_size'):
config.block_size = MAX_CONTEXT_TOKENS
if hasattr(config, 'use_cache'):
config.use_cache = False
if hasattr(config, 'tie_word_embeddings'):
config.tie_word_embeddings = True
if hasattr(config, 'output_attentions'):
config.output_attentions = False
if hasattr(config, 'output_hidden_states'):
config.output_hidden_states = False
if hasattr(config, 'use_cache'):
config.use_cache = False
tokenizer_kwargs = {"config": original_config, "trust_remote_code": current_trust_remote_code}
global_tokenizer = AutoTokenizer.from_pretrained(current_model_name, **tokenizer_kwargs)
model_kwargs = {"config": config, "torch_dtype": TORCH_DTYPE, "trust_remote_code": current_trust_remote_code}
global_model = AutoModelForCausalLM.from_pretrained(current_model_name, **model_kwargs)
global_model.to(device)
global_model.eval()
global_tokens["eos_token_id"] = global_tokenizer.eos_token_id
global_tokens["pad_token_id"] = global_tokenizer.pad_token_id
if global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is not None:
global_tokens["pad_token_id"] = global_tokens["eos_token_id"]
if global_model.config.pad_token_id is None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
elif global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is None:
pass
if global_model.config.pad_token_id is None and global_tokens.get("pad_token_id") is not None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
except Exception as e:
global_model = None
global_tokenizer = None
global_tokens = {}
html_code = """
<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Chatbot Profesional</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
#chatbox { width: 100%; height: 400px; border: 1px solid #ccc; padding: 10px; overflow-y: scroll; margin-bottom: 10px; }
#user-input { width: calc(100% - 100px); padding: 8px; box-sizing: border-box;}
#send-btn { width: 90px; padding: 8px 0;}
#input-area { display: flex;}
</style>
</head>
<body>
<h1>Chatbot Profesional (POST API)</h1>
<div id="chatbox"></div>
<div id="input-area">
<input type="text" id="user-input" placeholder="Escribe tu mensaje aquí..." autocomplete="off"/>
<button id="send-btn">Enviar</button>
</div>
<script>
const chatbox = document.getElementById('chatbox');
const userInput = document.getElementById('user-input');
const sendBtn = document.getElementById('send-btn');
let conversationHistory = [];
const DEFAULT_SYSTEM_PROMPT = "Eres un asistente profesional y servicial.";
let currentSystemPrompt = DEFAULT_SYSTEM_PROMPT;
let botMessageElement = null;
function appendMessage(sender, text, isStreaming = false) {
let msg;
if (isStreaming && botMessageElement) {
botMessageElement.textContent += text;
} else {
msg = document.createElement('p');
msg.innerHTML = `<strong>${sender}:</strong> `;
const textNode = document.createTextNode(text);
msg.appendChild(textNode);
chatbox.appendChild(msg);
if (sender === 'Bot' && isStreaming) {
botMessageElement = textNode;
} else {
botMessageElement = null;
}
}
chatbox.scrollTop = chatbox.scrollHeight;
}
function updateHistory(role, content) {
conversationHistory.push({ "role": role, "content": content });
const maxHistorySize = 10;
if (conversationHistory.length > maxHistorySize * 2) {
conversationHistory = conversationHistory.slice(-(maxHistorySize * 2));
}
}
async function sendMessage() {
const text = userInput.value;
if (!text) {
return;
}
appendMessage('Usuario', text);
updateHistory("user", text);
userInput.value = '';
sendBtn.disabled = true;
botMessageElement = null;
const messagePayload = {
input_text: text,
history: conversationHistory,
system_prompt: currentSystemPrompt,
stream: true,
temperature: 1.0,
top_k: 50,
top_p: 1.0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
presence_penalty: 0.0,
num_beams: 1,
length_penalty: 1.0,
no_repeat_ngram_size: 0,
early_stopping: false,
do_sample: true,
use_mirostat: false,
mirostat_tau: 5.0,
mirostat_eta: 0.1,
max_new_tokens: 512,
num_return_sequences: 1,
return_token_logprobs: true
};
try {
const response = await fetch('/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(messagePayload),
});
if (!response.ok) {
const errorData = await response.json();
throw new Error(`API Error: ${response.status} ${response.statusText} - ${errorData.detail || errorData.error}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = '';
let currentBotResponse = "";
while (true) {
const { value, done } = await reader.read();
if (done) break;
buffer += decoder.decode(value, { stream: true });
const lines = buffer.split('\n');
buffer = lines.pop();
for (const line of lines) {
if (line.trim() === '') continue;
try {
const data = JSON.parse(line);
if (data.type === 'token') {
currentBotResponse += data.text;
appendMessage('Bot', data.text, true);
} else if (data.type === 'done') {
if (data.total_tokens !== undefined) {
appendMessage('System', `Generated ${data.total_tokens} tokens. Finish reason: ${data.finish_reason}`);
}
if (data.final_text !== undefined) {
updateHistory("assistant", data.final_text);
} else if (currentBotResponse) {
updateHistory("assistant", currentBotResponse);
}
} else if (data.type === 'error') {
appendMessage('Error', data.message);
currentBotResponse = "";
}
} catch (e) {
appendMessage('Error', 'Failed to process stream.');
currentBotResponse = "";
reader.cancel();
return;
}
}
}
if (buffer.trim() !== '') {
try {
const data = JSON.parse(buffer);
if (data.type === 'token') {
currentBotResponse += data.text;
appendMessage('Bot', data.text, true);
} else if (data.type === 'done') {
if (data.total_tokens !== undefined) {
appendMessage('System', `Generated ${data.total_tokens} tokens. Finish reason: ${data.finish_reason}`);
}
if (data.final_text !== undefined) {
updateHistory("assistant", data.final_text);
} else if (currentBotResponse) {
updateHistory("assistant", currentBotResponse);
}
} else if (data.type === 'error') {
appendMessage('Error', data.message);
currentBotResponse = "";
}
} catch (e) {
appendMessage('Error', 'Failed to process remaining stream data.');
currentBotResponse = "";
}
}
if (currentBotResponse && !botMessageElement) {
updateHistory("assistant", currentBotResponse);
}
botMessageElement = null;
currentBotResponse = "";
} catch (error) {
appendMessage('Error', error.message || 'An unknown error occurred.');
botMessageElement = null;
currentBotResponse = "";
} finally {
sendBtn.disabled = false;
}
}
sendBtn.onclick = sendMessage;
userInput.addEventListener('keypress', function(event) {
if (event.key === 'Enter') {
event.preventDefault();
sendMessage();
}
});
</script>
</body>
</html>
"""
@app.get("/", response_class=HTMLResponse, summary="Interactive HTML interface")
async def root():
return HTMLResponse(content=html_code)
@app.post("/generate", summary="Generate text", dependencies=[Depends(get_api_key)])
async def generate_endpoint(req: GenerateRequest):
if global_model is None or global_tokenizer is None:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Model is not loaded.")
device = "cpu"
apply_seed(req.seed)
try:
initial_prompt_text = format_conversation(req.input_text, req.history, req.system_prompt)
except Exception as e:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Error formatting conversation: {e}")
try:
tokenizer_encoding_kwargs = req.tokenizer_kwargs or {}
encoded = global_tokenizer(initial_prompt_text, return_tensors="pt", add_special_tokens=False, **tokenizer_encoding_kwargs).to(device)
initial_ids_before_trunc = encoded.input_ids
initial_prompt_tokens_count_before_trunc = initial_ids_before_trunc.shape[-1]
ids = truncate_encoded_ids(initial_ids_before_trunc, MAX_CONTEXT_TOKENS)
current_prompt_tokens_count = ids.shape[-1]
except Exception as e:
await cleanup()
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Tokenizer encoding error: {e}")
if req.tokenize_only:
await cleanup()
return JSONResponse({
"prompt_tokens_count": initial_prompt_tokens_count_before_trunc,
"max_context_tokens": MAX_CONTEXT_TOKENS,
"truncated": initial_prompt_tokens_count_before_trunc > MAX_CONTEXT_TOKENS,
"input_text_processed": initial_prompt_text,
"input_ids_truncated": ids.tolist()[0]
})
total_capacity = MAX_CONTEXT_TOKENS + MAX_GENERATION_TOKENS
total_requested_seq_len = current_prompt_tokens_count + req.max_new_tokens
if not req.stream and total_requested_seq_len > total_capacity:
await cleanup()
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Requested sequence length ({total_requested_seq_len} tokens = {current_prompt_tokens_count} prompt + {req.max_new_tokens} new) exceeds model capacity ({total_capacity} tokens) and non-streaming is requested. Consider enabling streaming or reducing max_new_tokens."
)
async with generation_semaphore:
try:
gen_cfg = GenerationConfig(
temperature=req.temperature,
top_k=req.top_k,
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
frequency_penalty=req.frequency_penalty,
presence_penalty=req.presence_penalty,
num_beams=req.num_beams if not req.stream else 1,
length_penalty=req.length_penalty,
no_repeat_ngram_size=req.no_repeat_ngram_size,
early_stopping=req.early_stopping,
do_sample=req.do_sample,
use_mirostat_mode=1 if req.use_mirostat else 0,
mirostat_tau=req.mirostat_tau,
mirostat_eta=req.mirostat_eta,
max_new_tokens=req.max_new_tokens,
eos_token_id=req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id"),
pad_token_id=req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id"),
bos_token_id=req.bos_token_id_override if req.bos_token_id_override is not None else global_tokenizer.bos_token_id,
num_return_sequences=req.num_return_sequences if not req.stream else 1,
bad_words_ids=req.bad_words_ids,
forced_bos_token_id=req.forced_bos_token_id,
forced_eos_token_id=req.forced_eos_token_id,
renormalize_logits=req.renormalize_logits,
suppress_tokens=req.suppress_tokens,
begin_suppress_tokens=req.begin_suppress_tokens,
end_suppress_tokens=req.end_suppress_tokens,
encoder_no_repeat_ngram_size=req.encoder_no_repeat_ngram_size,
min_length=req.min_length,
max_length=req.max_length,
exponential_decay_length_penalty=req.exponential_decay_length_penalty,
use_cache=req.use_cache,
typical_p=req.typical_p,
epsilon_cutoff=req.epsilon_cutoff,
eta_cutoff=req.eta_cutoff,
temperature_cutoff=req.temperature_cutoff,
encoder_repetition_penalty=req.encoder_repetition_penalty,
max_time=req.max_time,
output_watermark=req.output_watermark,
diversity_penalty=req.diversity_penalty,
num_beam_groups=req.num_beam_groups if not req.stream else 1,
length_normalization_factor=req.length_normalization_factor,
min_new_tokens=req.min_new_tokens,
do_normalize_logits=req.do_normalize_logits,
output_scores=req.output_scores,
output_attentions=req.output_attentions,
output_hidden_states=req.output_hidden_states,
)
if req.stream:
gen_cfg.use_cache = True
gen_cfg.num_beams = 1
gen_cfg.num_return_sequences = 1
gen_cfg.num_beam_groups = 1
return StreamingResponse(stream_generation_logic(req, ids, gen_cfg, device), media_type="text/plain" if req.return_only_text else "application/json")
else:
response_payload = await non_stream_generation_logic(req, ids, gen_cfg, device)
if req.return_only_text:
texts = [seq["text"] for seq in response_payload.get("generated_sequences", []) if seq.get("text") is not None]
if req.num_return_sequences == 1 and texts:
return PlainTextResponse(texts[0])
else:
return JSONResponse(texts)
else:
return JSONResponse(response_payload)
except Exception as e:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}")
finally:
await cleanup()
if __name__ == "__main__":
uvicorn.run(
app, host="0.0.0.0", port=7860,
log_level="critical",
access_log=False
)