Spaces:
Sleeping
Sleeping
rough test
Browse files
app.py
CHANGED
@@ -1,12 +1,284 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
from tokenizers import Tokenizer
|
4 |
from transformers import LogitsProcessor
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
llm_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
|
8 |
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
# pipeline2 = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
11 |
|
12 |
generator = pipeline('text-generation', model="facebook/opt-125m")
|
@@ -23,9 +295,14 @@ def test_it(input):
|
|
23 |
|
24 |
|
25 |
def predict(prompt):
|
26 |
-
inputs = tokenizer(prompt, padding=True, truncation=True, return_tensors="pt")
|
27 |
print(inputs)
|
28 |
-
outputs = llm_model(**inputs, labels=inputs["input_ids"]
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
print(tokenizer.decode(outputs["logits"][0, -1, :].topk(10).indices))
|
31 |
|
|
|
1 |
+
from __future__ import annotations
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
from tokenizers import Tokenizer
|
5 |
from transformers import LogitsProcessor
|
6 |
|
7 |
|
8 |
+
import collections
|
9 |
+
from math import sqrt
|
10 |
+
|
11 |
+
import scipy.stats
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import Tensor
|
15 |
+
from tokenizers import Tokenizer
|
16 |
+
from transformers import LogitsProcessor, LogitsProcessorList
|
17 |
+
|
18 |
+
from nltk.util import ngrams
|
19 |
+
|
20 |
+
from normalizers import normalization_strategy_lookup
|
21 |
+
|
22 |
+
class WatermarkBase:
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
vocab: list[int] = None,
|
26 |
+
gamma: float = 0.5,
|
27 |
+
delta: float = 2.0,
|
28 |
+
seeding_scheme: str = "simple_1", # mostly unused/always default
|
29 |
+
hash_key: int = 15485863, # just a large prime number to create a rng seed with sufficient bit width
|
30 |
+
select_green_tokens: bool = True,
|
31 |
+
):
|
32 |
+
|
33 |
+
# watermarking parameters
|
34 |
+
self.vocab = vocab
|
35 |
+
self.vocab_size = len(vocab)
|
36 |
+
self.gamma = gamma
|
37 |
+
self.delta = delta
|
38 |
+
self.seeding_scheme = seeding_scheme
|
39 |
+
self.rng = None
|
40 |
+
self.hash_key = hash_key
|
41 |
+
self.select_green_tokens = select_green_tokens
|
42 |
+
|
43 |
+
def _seed_rng(self, input_ids: torch.LongTensor, seeding_scheme: str = None) -> None:
|
44 |
+
# can optionally override the seeding scheme,
|
45 |
+
# but uses the instance attr by default
|
46 |
+
if seeding_scheme is None:
|
47 |
+
seeding_scheme = self.seeding_scheme
|
48 |
+
|
49 |
+
if seeding_scheme == "simple_1":
|
50 |
+
assert input_ids.shape[-1] >= 1, f"seeding_scheme={seeding_scheme} requires at least a 1 token prefix sequence to seed rng"
|
51 |
+
prev_token = input_ids[-1].item()
|
52 |
+
self.rng.manual_seed(self.hash_key * prev_token)
|
53 |
+
else:
|
54 |
+
raise NotImplementedError(f"Unexpected seeding_scheme: {seeding_scheme}")
|
55 |
+
return
|
56 |
+
|
57 |
+
def _get_greenlist_ids(self, input_ids: torch.LongTensor) -> list[int]:
|
58 |
+
# seed the rng using the previous tokens/prefix
|
59 |
+
# according to the seeding_scheme
|
60 |
+
self._seed_rng(input_ids)
|
61 |
+
|
62 |
+
greenlist_size = int(self.vocab_size * self.gamma)
|
63 |
+
vocab_permutation = torch.randperm(self.vocab_size, device=input_ids.device, generator=self.rng)
|
64 |
+
if self.select_green_tokens: # directly
|
65 |
+
greenlist_ids = vocab_permutation[:greenlist_size] # new
|
66 |
+
else: # select green via red
|
67 |
+
greenlist_ids = vocab_permutation[(self.vocab_size - greenlist_size) :] # legacy behavior
|
68 |
+
return greenlist_ids
|
69 |
+
|
70 |
+
|
71 |
+
class WatermarkLogitsProcessor(WatermarkBase, LogitsProcessor):
|
72 |
+
|
73 |
+
def __init__(self, *args, **kwargs):
|
74 |
+
super().__init__(*args, **kwargs)
|
75 |
+
|
76 |
+
def _calc_greenlist_mask(self, scores: torch.FloatTensor, greenlist_token_ids) -> torch.BoolTensor:
|
77 |
+
# TODO lets see if we can lose this loop
|
78 |
+
green_tokens_mask = torch.zeros_like(scores)
|
79 |
+
for b_idx in range(len(greenlist_token_ids)):
|
80 |
+
green_tokens_mask[b_idx][greenlist_token_ids[b_idx]] = 1
|
81 |
+
final_mask = green_tokens_mask.bool()
|
82 |
+
return final_mask
|
83 |
+
|
84 |
+
def _bias_greenlist_logits(self, scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float) -> torch.Tensor:
|
85 |
+
scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias
|
86 |
+
return scores
|
87 |
+
|
88 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
89 |
+
|
90 |
+
# this is lazy to allow us to colocate on the watermarked model's device
|
91 |
+
if self.rng is None:
|
92 |
+
self.rng = torch.Generator(device=input_ids.device)
|
93 |
+
|
94 |
+
# NOTE, it would be nice to get rid of this batch loop, but currently,
|
95 |
+
# the seed and partition operations are not tensor/vectorized, thus
|
96 |
+
# each sequence in the batch needs to be treated separately.
|
97 |
+
batched_greenlist_ids = [None for _ in range(input_ids.shape[0])]
|
98 |
+
|
99 |
+
for b_idx in range(input_ids.shape[0]):
|
100 |
+
greenlist_ids = self._get_greenlist_ids(input_ids[b_idx])
|
101 |
+
batched_greenlist_ids[b_idx] = greenlist_ids
|
102 |
+
|
103 |
+
green_tokens_mask = self._calc_greenlist_mask(scores=scores, greenlist_token_ids=batched_greenlist_ids)
|
104 |
+
|
105 |
+
scores = self._bias_greenlist_logits(scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta)
|
106 |
+
return scores
|
107 |
+
|
108 |
+
|
109 |
+
class WatermarkDetector(WatermarkBase):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
*args,
|
113 |
+
device: torch.device = None,
|
114 |
+
tokenizer: Tokenizer = None,
|
115 |
+
z_threshold: float = 4.0,
|
116 |
+
normalizers: list[str] = ["unicode"], # or also: ["unicode", "homoglyphs", "truecase"]
|
117 |
+
ignore_repeated_bigrams: bool = False,
|
118 |
+
**kwargs,
|
119 |
+
):
|
120 |
+
super().__init__(*args, **kwargs)
|
121 |
+
# also configure the metrics returned/preprocessing options
|
122 |
+
assert device, "Must pass device"
|
123 |
+
assert tokenizer, "Need an instance of the generating tokenizer to perform detection"
|
124 |
+
|
125 |
+
self.tokenizer = tokenizer
|
126 |
+
self.device = device
|
127 |
+
self.z_threshold = z_threshold
|
128 |
+
self.rng = torch.Generator(device=self.device)
|
129 |
+
|
130 |
+
if self.seeding_scheme == "simple_1":
|
131 |
+
self.min_prefix_len = 1
|
132 |
+
else:
|
133 |
+
raise NotImplementedError(f"Unexpected seeding_scheme: {self.seeding_scheme}")
|
134 |
+
|
135 |
+
self.normalizers = []
|
136 |
+
for normalization_strategy in normalizers:
|
137 |
+
self.normalizers.append(normalization_strategy_lookup(normalization_strategy))
|
138 |
+
|
139 |
+
self.ignore_repeated_bigrams = ignore_repeated_bigrams
|
140 |
+
if self.ignore_repeated_bigrams:
|
141 |
+
assert self.seeding_scheme == "simple_1", "No repeated bigram credit variant assumes the single token seeding scheme."
|
142 |
+
|
143 |
+
|
144 |
+
def _compute_z_score(self, observed_count, T):
|
145 |
+
# count refers to number of green tokens, T is total number of tokens
|
146 |
+
expected_count = self.gamma
|
147 |
+
numer = observed_count - expected_count * T
|
148 |
+
denom = sqrt(T * expected_count * (1 - expected_count))
|
149 |
+
z = numer / denom
|
150 |
+
return z
|
151 |
+
|
152 |
+
def _compute_p_value(self, z):
|
153 |
+
p_value = scipy.stats.norm.sf(z)
|
154 |
+
return p_value
|
155 |
+
|
156 |
+
def _score_sequence(
|
157 |
+
self,
|
158 |
+
input_ids: Tensor,
|
159 |
+
return_num_tokens_scored: bool = True,
|
160 |
+
return_num_green_tokens: bool = True,
|
161 |
+
return_green_fraction: bool = True,
|
162 |
+
return_green_token_mask: bool = False,
|
163 |
+
return_z_score: bool = True,
|
164 |
+
return_p_value: bool = True,
|
165 |
+
):
|
166 |
+
if self.ignore_repeated_bigrams:
|
167 |
+
# Method that only counts a green/red hit once per unique bigram.
|
168 |
+
# New num total tokens scored (T) becomes the number unique bigrams.
|
169 |
+
# We iterate over all unqiue token bigrams in the input, computing the greenlist
|
170 |
+
# induced by the first token in each, and then checking whether the second
|
171 |
+
# token falls in that greenlist.
|
172 |
+
assert return_green_token_mask == False, "Can't return the green/red mask when ignoring repeats."
|
173 |
+
bigram_table = {}
|
174 |
+
token_bigram_generator = ngrams(input_ids.cpu().tolist(), 2)
|
175 |
+
freq = collections.Counter(token_bigram_generator)
|
176 |
+
num_tokens_scored = len(freq.keys())
|
177 |
+
for idx, bigram in enumerate(freq.keys()):
|
178 |
+
prefix = torch.tensor([bigram[0]], device=self.device) # expects a 1-d prefix tensor on the randperm device
|
179 |
+
greenlist_ids = self._get_greenlist_ids(prefix)
|
180 |
+
bigram_table[bigram] = True if bigram[1] in greenlist_ids else False
|
181 |
+
green_token_count = sum(bigram_table.values())
|
182 |
+
else:
|
183 |
+
num_tokens_scored = len(input_ids) - self.min_prefix_len
|
184 |
+
if num_tokens_scored < 1:
|
185 |
+
raise ValueError((f"Must have at least {1} token to score after "
|
186 |
+
f"the first min_prefix_len={self.min_prefix_len} tokens required by the seeding scheme."))
|
187 |
+
# Standard method.
|
188 |
+
# Since we generally need at least 1 token (for the simplest scheme)
|
189 |
+
# we start the iteration over the token sequence with a minimum
|
190 |
+
# num tokens as the first prefix for the seeding scheme,
|
191 |
+
# and at each step, compute the greenlist induced by the
|
192 |
+
# current prefix and check if the current token falls in the greenlist.
|
193 |
+
green_token_count, green_token_mask = 0, []
|
194 |
+
for idx in range(self.min_prefix_len, len(input_ids)):
|
195 |
+
curr_token = input_ids[idx]
|
196 |
+
greenlist_ids = self._get_greenlist_ids(input_ids[:idx])
|
197 |
+
if curr_token in greenlist_ids:
|
198 |
+
green_token_count += 1
|
199 |
+
green_token_mask.append(True)
|
200 |
+
else:
|
201 |
+
green_token_mask.append(False)
|
202 |
+
|
203 |
+
score_dict = dict()
|
204 |
+
if return_num_tokens_scored:
|
205 |
+
score_dict.update(dict(num_tokens_scored=num_tokens_scored))
|
206 |
+
if return_num_green_tokens:
|
207 |
+
score_dict.update(dict(num_green_tokens=green_token_count))
|
208 |
+
if return_green_fraction:
|
209 |
+
score_dict.update(dict(green_fraction=(green_token_count / num_tokens_scored)))
|
210 |
+
if return_z_score:
|
211 |
+
score_dict.update(dict(z_score=self._compute_z_score(green_token_count, num_tokens_scored)))
|
212 |
+
if return_p_value:
|
213 |
+
z_score = score_dict.get("z_score")
|
214 |
+
if z_score is None:
|
215 |
+
z_score = self._compute_z_score(green_token_count, num_tokens_scored)
|
216 |
+
score_dict.update(dict(p_value=self._compute_p_value(z_score)))
|
217 |
+
if return_green_token_mask:
|
218 |
+
score_dict.update(dict(green_token_mask=green_token_mask))
|
219 |
+
|
220 |
+
return score_dict
|
221 |
+
|
222 |
+
def detect(
|
223 |
+
self,
|
224 |
+
text: str = None,
|
225 |
+
tokenized_text: list[int] = None,
|
226 |
+
return_prediction: bool = True,
|
227 |
+
return_scores: bool = True,
|
228 |
+
z_threshold: float = None,
|
229 |
+
**kwargs,
|
230 |
+
) -> dict:
|
231 |
+
|
232 |
+
assert (text is not None) ^ (tokenized_text is not None), "Must pass either the raw or tokenized string"
|
233 |
+
if return_prediction:
|
234 |
+
kwargs["return_p_value"] = True # to return the "confidence":=1-p of positive detections
|
235 |
+
|
236 |
+
# run optional normalizers on text
|
237 |
+
for normalizer in self.normalizers:
|
238 |
+
text = normalizer(text)
|
239 |
+
if len(self.normalizers) > 0:
|
240 |
+
print(f"Text after normalization:\n\n{text}\n")
|
241 |
+
|
242 |
+
if tokenized_text is None:
|
243 |
+
assert self.tokenizer is not None, (
|
244 |
+
"Watermark detection on raw string ",
|
245 |
+
"requires an instance of the tokenizer ",
|
246 |
+
"that was used at generation time.",
|
247 |
+
)
|
248 |
+
tokenized_text = self.tokenizer(text, return_tensors="pt", add_special_tokens=False)["input_ids"][0].to(self.device)
|
249 |
+
if tokenized_text[0] == self.tokenizer.bos_token_id:
|
250 |
+
tokenized_text = tokenized_text[1:]
|
251 |
+
else:
|
252 |
+
# try to remove the bos_tok at beginning if it's there
|
253 |
+
if (self.tokenizer is not None) and (tokenized_text[0] == self.tokenizer.bos_token_id):
|
254 |
+
tokenized_text = tokenized_text[1:]
|
255 |
+
|
256 |
+
# call score method
|
257 |
+
output_dict = {}
|
258 |
+
score_dict = self._score_sequence(tokenized_text, **kwargs)
|
259 |
+
if return_scores:
|
260 |
+
output_dict.update(score_dict)
|
261 |
+
# if passed return_prediction then perform the hypothesis test and return the outcome
|
262 |
+
if return_prediction:
|
263 |
+
z_threshold = z_threshold if z_threshold else self.z_threshold
|
264 |
+
assert z_threshold is not None, "Need a threshold in order to decide outcome of detection test"
|
265 |
+
output_dict["prediction"] = score_dict["z_score"] > z_threshold
|
266 |
+
if output_dict["prediction"]:
|
267 |
+
output_dict["confidence"] = 1 - score_dict["p_value"]
|
268 |
+
|
269 |
+
return output_dict
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
llm_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
|
275 |
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
|
276 |
|
277 |
+
watermark_processor = WatermarkLogitsProcessor(vocab=list(tokenizer.get_vocab().values()),
|
278 |
+
gamma=0.25,
|
279 |
+
delta=2.0,
|
280 |
+
seeding_scheme="simple_1")
|
281 |
+
|
282 |
# pipeline2 = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
283 |
|
284 |
generator = pipeline('text-generation', model="facebook/opt-125m")
|
|
|
295 |
|
296 |
|
297 |
def predict(prompt):
|
298 |
+
inputs = tokenizer(prompt, padding=True, truncation=True, return_tensors="pt").to(llm_model.device)
|
299 |
print(inputs)
|
300 |
+
outputs = llm_model.generate(**inputs, labels=inputs["input_ids"],
|
301 |
+
logits_processor=LogitsProcessorList([watermark_processor,]))
|
302 |
+
|
303 |
+
|
304 |
+
outputs = outputs[:, inputs["input_ids"].shape[-1]:]
|
305 |
+
print("Watermarked stuff", tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
306 |
|
307 |
print(tokenizer.decode(outputs["logits"][0, -1, :].topk(10).indices))
|
308 |
|