Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,16 @@ import os
|
|
2 |
os.system("pip install git+https://github.com/openai/whisper.git")
|
3 |
import gradio as gr
|
4 |
import whisper
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
#call tokenizer and NLP model for text classification
|
@@ -14,6 +22,17 @@ model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitt
|
|
14 |
# call whisper model for audio/speech processing
|
15 |
model = whisper.load_model("small")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def inference_audio(audio):
|
19 |
audio = whisper.load_audio(audio)
|
@@ -36,6 +55,49 @@ def inference_text(audio):
|
|
36 |
|
37 |
return res['label'],res['score']
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
audio = gr.Audio(
|
40 |
label="Input Audio",
|
41 |
show_label=False,
|
@@ -44,7 +106,7 @@ audio = gr.Audio(
|
|
44 |
)
|
45 |
|
46 |
|
47 |
-
app=gr.Interface(title="Sentiment Audio Analysis",fn=
|
48 |
|
49 |
|
50 |
|
|
|
2 |
os.system("pip install git+https://github.com/openai/whisper.git")
|
3 |
import gradio as gr
|
4 |
import whisper
|
5 |
+
from huggingface_hub import from_pretrained_keras
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from transformers import pipeline
|
8 |
+
import librosa
|
9 |
+
import librosa.display
|
10 |
+
from sklearn.preprocessing import StandardScaler
|
11 |
+
import logging
|
12 |
+
import numpy
|
13 |
+
import pickle
|
14 |
+
|
15 |
|
16 |
|
17 |
#call tokenizer and NLP model for text classification
|
|
|
22 |
# call whisper model for audio/speech processing
|
23 |
model = whisper.load_model("small")
|
24 |
|
25 |
+
# call model for audio emotions
|
26 |
+
reloaded_model = from_pretrained_keras('jmparejaz/RAVDESS-CREMAD_AudioEmotionClassifier')
|
27 |
+
|
28 |
+
# call scaler and decoder
|
29 |
+
with open("scaler.pkl", "rb") as f:
|
30 |
+
scaler = pickle.load(f)
|
31 |
+
|
32 |
+
with open("encoder.pkl", "rb") as f:
|
33 |
+
encoder = pickle.load(f)
|
34 |
+
|
35 |
+
|
36 |
|
37 |
def inference_audio(audio):
|
38 |
audio = whisper.load_audio(audio)
|
|
|
55 |
|
56 |
return res['label'],res['score']
|
57 |
|
58 |
+
|
59 |
+
def extract_features(data):
|
60 |
+
# ZCR
|
61 |
+
result = np.array([])
|
62 |
+
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
|
63 |
+
result=np.hstack((result, zcr)) # stacking horizontally
|
64 |
+
|
65 |
+
# Chroma_stft
|
66 |
+
stft = np.abs(librosa.stft(data))
|
67 |
+
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
|
68 |
+
result = np.hstack((result, chroma_stft)) # stacking horizontally
|
69 |
+
|
70 |
+
# MFCC
|
71 |
+
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
|
72 |
+
result = np.hstack((result, mfcc)) # stacking horizontally
|
73 |
+
|
74 |
+
# Root Mean Square Value
|
75 |
+
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
|
76 |
+
result = np.hstack((result, rms)) # stacking horizontally
|
77 |
+
|
78 |
+
# MelSpectogram
|
79 |
+
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
|
80 |
+
result = np.hstack((result, mel)) # stacking horizontally
|
81 |
+
|
82 |
+
return result
|
83 |
+
|
84 |
+
def audio_emotions(audio):
|
85 |
+
data = audio.flatten()
|
86 |
+
sr=22050
|
87 |
+
features_audio = extract_features(data)
|
88 |
+
features_audio = np.array(features_audio)
|
89 |
+
scaled_features=scaler.transform(features_audio)
|
90 |
+
scaled_features = np.expand_dims(scaled_features, axis=2)
|
91 |
+
prediction=reloaded_model.predict(scaled_features)
|
92 |
+
y_pred = encoder.inverse_transform(prediction)
|
93 |
+
return y_pred
|
94 |
+
|
95 |
+
def main(audio):
|
96 |
+
r1,r2=inference_text(audio)
|
97 |
+
r3=audio_emotions(audio)
|
98 |
+
return r1,r2,r3
|
99 |
+
|
100 |
+
|
101 |
audio = gr.Audio(
|
102 |
label="Input Audio",
|
103 |
show_label=False,
|
|
|
106 |
)
|
107 |
|
108 |
|
109 |
+
app=gr.Interface(title="Sentiment Audio Analysis",fn=main,inputs=[audio], outputs=["text","text","text"])
|
110 |
|
111 |
|
112 |
|