Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install git+https://github.com/openai/whisper.git") | |
import gradio as gr | |
import whisper | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
#call tokenizer and NLP model for text classification | |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") | |
model_nlp = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest") | |
config = AutoConfig.from_pretrained(model_nlp) | |
# call whisper model for audio/speech processing | |
model = whisper.load_model("small") | |
def inference_audio(audio): | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
_, probs = model.detect_language(mel) | |
options = whisper.DecodingOptions(fp16 = False) | |
result = whisper.decode(model, mel, options) | |
print(result.text) | |
return result.text, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
def inference_text(audio): | |
text,_,_,_ =inference_audio(audio) | |
sentiment_task = pipeline("sentiment-analysis", model=model_nlp, tokenizer=tokenizer) | |
result=sentiment_task(text) | |
return result | |
block = gr.Blocks() | |
with block: | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
audio = gr.Audio( | |
label="Input Audio", | |
show_label=False, | |
source="microphone", | |
type="filepath" | |
) | |
btn = gr.Button("Transcribe") | |
text = gr.Textbox(show_label=False, elem_id="result-textarea") | |
btn.click(inference_text, inputs=[audio], outputs=[text]) | |
block.launch() | |
from transformers import pipeline | |
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) | |
sentiment_task("Covid cases are increasing fast!") | |