Spaces:
Runtime error
Runtime error
feat: automatic document completion
Browse files
app.py
CHANGED
@@ -1,76 +1,185 @@
|
|
1 |
-
import gradio as gr
|
2 |
import subprocess
|
3 |
-
import
|
|
|
4 |
import time
|
5 |
import re
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
|
|
|
15 |
reply = []
|
16 |
|
17 |
-
for i in
|
18 |
-
content = """What do these sentences about Hugging Face Transformers (a machine learning library) mean in Korean? Please do not translate the word after a 🤗 emoji as it is a product name. Please ignore the video and image and translate only the sentences I provided. Ignore the contents of the iframe tag.
|
19 |
-
```md
|
20 |
-
%s"""%'\n'.join(text_list[i:i+10])
|
21 |
-
|
22 |
chat = openai.ChatCompletion.create(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
print("
|
30 |
-
|
31 |
-
|
32 |
reply.append(chat.choices[0].message.content)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
gr.inputs.Textbox(lines=2, label="Input Open API Key"),
|
40 |
-
gr.inputs.File(label="Upload MDX File")
|
41 |
-
]
|
42 |
|
43 |
outputs = gr.outputs.Textbox(label="Translation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if file is not None:
|
50 |
-
text_input = ""
|
51 |
-
with open(file.name, 'r') as f:
|
52 |
-
text_input += f.read()
|
53 |
-
text_input += '\n'
|
54 |
-
print(text_input)
|
55 |
-
# 텍스트에서 코드 블록을 제거합니다.
|
56 |
-
text_input = re.sub(r'```.*?```', '', text_input, flags=re.DOTALL)
|
57 |
-
|
58 |
-
text_input = re.sub(r'^\|.*\|$\n?', '', text_input, flags=re.MULTILINE)
|
59 |
-
|
60 |
-
# 텍스트에서 빈 줄을 제거합니다.
|
61 |
-
text_input = re.sub(r'^\n', '', text_input, flags=re.MULTILINE)
|
62 |
-
text_input = re.sub(r'\n\n+', '\n\n', text_input)
|
63 |
-
else:
|
64 |
-
text_input = ""
|
65 |
-
|
66 |
-
return translate(text_input, openapi_key)
|
67 |
-
|
68 |
-
prompt_translate = gr.Interface(
|
69 |
-
fn=translate_with_upload,
|
70 |
-
inputs=inputs,
|
71 |
-
outputs=outputs,
|
72 |
-
title="ChatGPT Korean Prompt Translation",
|
73 |
-
description="Translate your text into Korean using the GPT-3 model.", verbose=True
|
74 |
-
)
|
75 |
|
76 |
-
|
|
|
|
|
1 |
import subprocess
|
2 |
+
import requests
|
3 |
+
import string
|
4 |
import time
|
5 |
import re
|
6 |
|
7 |
+
import openai
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
def get_content(filepath: str) -> str:
|
11 |
+
url = string.Template(
|
12 |
+
"https://raw.githubusercontent.com/huggingface/"
|
13 |
+
"transformers/main/docs/source/en/$filepath"
|
14 |
+
).safe_substitute(filepath=filepath)
|
15 |
+
response = requests.get(url)
|
16 |
+
if response.status_code == 200:
|
17 |
+
content = response.text
|
18 |
+
return content
|
19 |
+
else:
|
20 |
+
raise ValueError("Failed to retrieve content from the URL.", url)
|
21 |
+
|
22 |
+
def preprocess_content(content: str) -> str:
|
23 |
+
# Extract text to translate from document
|
24 |
+
|
25 |
+
## ignore top license comment
|
26 |
+
to_translate = content[content.find('#'):]
|
27 |
+
## remove code blocks from text
|
28 |
+
to_translate = re.sub(r'```.*?```', '', to_translate, flags=re.DOTALL)
|
29 |
+
## remove markdown tables from text
|
30 |
+
to_translate = re.sub(r'^\|.*\|$\n?', '', to_translate, flags=re.MULTILINE)
|
31 |
+
## remove empty lines from text
|
32 |
+
to_translate = re.sub(r'\n\n+', '\n\n', to_translate)
|
33 |
+
|
34 |
+
return to_translate
|
35 |
+
|
36 |
+
def get_full_prompt(language: str, filepath: str) -> str:
|
37 |
+
content = get_content(filepath)
|
38 |
+
to_translate = preprocess_content(content)
|
39 |
+
|
40 |
+
prompt = string.Template(
|
41 |
+
"What do these sentences about Hugging Face Transformers "
|
42 |
+
"(a machine learning library) mean in $language? "
|
43 |
+
"Please do not translate the word after a 🤗 emoji "
|
44 |
+
"as it is a product name.\n```md"
|
45 |
+
).safe_substitute(language=language)
|
46 |
+
return '\n'.join([prompt, to_translate.strip(), "```"])
|
47 |
+
|
48 |
+
def split_markdown_sections(markdown: str) -> list:
|
49 |
+
# Find all titles using regular expressions
|
50 |
+
return re.split(r'^(#+\s+)(.*)$', markdown, flags=re.MULTILINE)[1:]
|
51 |
+
# format is like [level, title, content, level, title, content, ...]
|
52 |
+
|
53 |
+
def get_anchors(divided: list) -> list:
|
54 |
+
anchors = []
|
55 |
+
# from https://github.com/huggingface/doc-builder/blob/01b262bae90d66e1150cdbf58c83c02733ed4366/src/doc_builder/build_doc.py#L300-L302
|
56 |
+
for title in divided[1::3]:
|
57 |
+
anchor = re.sub(r"[^a-z0-9\s]+", "", title.lower())
|
58 |
+
anchor = re.sub(r"\s{2,}", " ", anchor.strip()).replace(" ", "-")
|
59 |
+
anchors.append(f"[[{anchor}]]")
|
60 |
+
return anchors
|
61 |
+
|
62 |
+
def make_scaffold(content: str, to_translate: str) -> string.Template:
|
63 |
+
scaffold = content
|
64 |
+
for i, text in enumerate(to_translate.split('\n\n')):
|
65 |
+
scaffold = scaffold.replace(text, f'$hf_i18n_placeholder{i}', 1)
|
66 |
+
return string.Template(scaffold)
|
67 |
+
|
68 |
+
def fill_scaffold(filepath: str, translated: str) -> list[str]:
|
69 |
+
content = get_content(filepath)
|
70 |
+
to_translate = preprocess_content(content)
|
71 |
+
|
72 |
+
scaffold = make_scaffold(content, to_translate)
|
73 |
+
divided = split_markdown_sections(to_translate)
|
74 |
+
anchors = get_anchors(divided)
|
75 |
+
|
76 |
+
translated = split_markdown_sections(translated)
|
77 |
+
translated[1::3] = [
|
78 |
+
f"{korean_title} {anchors[i]}"
|
79 |
+
for i, korean_title in enumerate(translated[1::3])
|
80 |
+
]
|
81 |
+
translated = ''.join([
|
82 |
+
''.join(translated[i*3:i*3+3])
|
83 |
+
for i in range(len(translated) // 3)
|
84 |
+
]).split('\n\n')
|
85 |
+
translated_doc = scaffold.safe_substitute({
|
86 |
+
f"hf_i18n_placeholder{i}": text
|
87 |
+
for i, text in enumerate(translated)
|
88 |
+
})
|
89 |
+
|
90 |
+
return [content, translated_doc]
|
91 |
+
|
92 |
+
def translate_openai(language: str, filepath: str, api_key: str) -> list[str]:
|
93 |
+
content = get_content(filepath)
|
94 |
+
return [content, "Please use the web UI for now."]
|
95 |
+
raise NotImplementedError("Currently debugging output.")
|
96 |
+
|
97 |
+
openai.api_key = api_key
|
98 |
+
prompt = string.Template(
|
99 |
+
"What do these sentences about Hugging Face Transformers "
|
100 |
+
"(a machine learning library) mean in $language? "
|
101 |
+
"Please do not translate the word after a 🤗 emoji "
|
102 |
+
"as it is a product name.\n```md"
|
103 |
+
).safe_substitute(language=language)
|
104 |
|
105 |
+
to_translate = preprocess_content(content)
|
106 |
+
|
107 |
+
scaffold = make_scaffold(content, to_translate)
|
108 |
+
divided = split_markdown_sections(to_translate)
|
109 |
+
anchors = get_anchors(divided)
|
110 |
|
111 |
+
sections = [''.join(divided[i*3:i*3+3]) for i in range(len(divided) // 3)]
|
112 |
reply = []
|
113 |
|
114 |
+
for i, section in enumerate(sections):
|
|
|
|
|
|
|
|
|
115 |
chat = openai.ChatCompletion.create(
|
116 |
+
model = "gpt-3.5-turbo",
|
117 |
+
messages=[{
|
118 |
+
"role": "user",
|
119 |
+
"content": "\n".join([prompt, section, '```'])
|
120 |
+
},]
|
121 |
+
)
|
122 |
+
print(f"{i} out of {len(sections)} complete. Estimated time remaining ~{len(sections) - i} mins")
|
123 |
+
|
|
|
124 |
reply.append(chat.choices[0].message.content)
|
125 |
|
126 |
+
translated = split_markdown_sections('\n\n'.join(reply))
|
127 |
+
print(translated[1::3], anchors)
|
128 |
+
translated[1::3] = [
|
129 |
+
f"{korean_title} {anchors[i]}"
|
130 |
+
for i, korean_title in enumerate(translated[1::3])
|
131 |
+
]
|
132 |
+
translated = ''.join([
|
133 |
+
''.join(translated[i*3:i*3+3])
|
134 |
+
for i in range(len(translated) // 3)
|
135 |
+
]).split('\n\n')
|
136 |
+
translated_doc = scaffold.safe_substitute({
|
137 |
+
f"hf_i18n_placeholder{i}": text
|
138 |
+
for i, text in enumerate(translated)
|
139 |
+
})
|
140 |
+
return translated_doc
|
141 |
|
142 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
143 |
|
144 |
outputs = gr.outputs.Textbox(label="Translation")
|
145 |
+
with demo:
|
146 |
+
gr.Markdown(
|
147 |
+
"# HuggingFace i18n \n"
|
148 |
+
"## made easy with this demo."
|
149 |
+
)
|
150 |
+
with gr.Row():
|
151 |
+
language_input = gr.inputs.Textbox(
|
152 |
+
default="Korean",
|
153 |
+
label=" / ".join([
|
154 |
+
"Target language", "langue cible",
|
155 |
+
"目标语", "Idioma Objetivo",
|
156 |
+
"도착어", "língua alvo"
|
157 |
+
])
|
158 |
+
)
|
159 |
+
filepath_input = gr.inputs.Textbox(
|
160 |
+
default="tasks/masked_language_modeling.md",
|
161 |
+
label="File path of transformers document"
|
162 |
+
)
|
163 |
+
with gr.Tabs():
|
164 |
+
with gr.TabItem("Web UI"):
|
165 |
+
prompt_button = gr.Button("Show Full Prompt", variant="primary")
|
166 |
+
# TODO: add with_prompt_checkbox so people can freely use other services such as DeepL or Papago.
|
167 |
+
gr.Markdown("1. Copy with the button right-hand side and paste into [chat.openai.com](https://chat.openai.com).")
|
168 |
+
prompt_output = gr.Textbox(label="Full Prompt", lines=3, show_copy_button=True)
|
169 |
+
# TODO: add check for segments, indicating whether user should add or remove new lines from their input. (gr.Row)
|
170 |
+
gr.Markdown("2. After getting the complete translation, remove randomly inserted newlines on your favorite text editor and paste the result below.")
|
171 |
+
ui_translated_input = gr.inputs.Textbox(label="Cleaned ChatGPT initial translation")
|
172 |
+
fill_button = gr.Button("Fill in scaffold", variant="primary")
|
173 |
+
with gr.TabItem("API (Not Implemented)"):
|
174 |
+
with gr.Row():
|
175 |
+
api_key_input = gr.inputs.Textbox(label="Your OpenAI API Key")
|
176 |
+
api_call_button = gr.Button("Translate (Call API)", variant="primary")
|
177 |
+
with gr.Row():
|
178 |
+
content_output = gr.Textbox(label="Original content", show_copy_button=True)
|
179 |
+
final_output = gr.Textbox(label="Draft for review", show_copy_button=True)
|
180 |
|
181 |
+
prompt_button.click(get_full_prompt, inputs=[language_input, filepath_input], outputs=prompt_output)
|
182 |
+
fill_button.click(fill_scaffold, inputs=[filepath_input, ui_translated_input], outputs=[content_output, final_output])
|
183 |
+
api_call_button.click(translate_openai, inputs=[language_input, filepath_input, api_key_input], outputs=[content_output, final_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
demo.launch()
|