Spaces:
Runtime error
Runtime error
Create new file
Browse files- GrammarTokenize.py +60 -0
GrammarTokenize.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import uvicorn
|
| 2 |
+
from fastapi import File
|
| 3 |
+
from fastapi import FastAPI
|
| 4 |
+
from fastapi import UploadFile
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import glob
|
| 9 |
+
import transformers
|
| 10 |
+
from transformers import AutoTokenizer
|
| 11 |
+
from transformers import AutoModelForSeq2SeqLM
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
print("Loading models...")
|
| 15 |
+
app = FastAPI()
|
| 16 |
+
|
| 17 |
+
device = "cpu"
|
| 18 |
+
correction_model_tag = "prithivida/grammar_error_correcter_v1"
|
| 19 |
+
correction_tokenizer = AutoTokenizer.from_pretrained(correction_model_tag)
|
| 20 |
+
correction_model = AutoModelForSeq2SeqLM.from_pretrained(correction_model_tag)
|
| 21 |
+
|
| 22 |
+
def set_seed(seed):
|
| 23 |
+
torch.manual_seed(seed)
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
torch.cuda.manual_seed_all(seed)
|
| 26 |
+
|
| 27 |
+
print("Models loaded !")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@app.get("/")
|
| 31 |
+
def read_root():
|
| 32 |
+
return {"Gramformer !"}
|
| 33 |
+
|
| 34 |
+
@app.get("/{correct}")
|
| 35 |
+
def get_correction(input_sentence):
|
| 36 |
+
set_seed(1212)
|
| 37 |
+
scored_corrected_sentence = correct(input_sentence)
|
| 38 |
+
return {"scored_corrected_sentence": scored_corrected_sentence}
|
| 39 |
+
|
| 40 |
+
def correct(input_sentence, max_candidates=1):
|
| 41 |
+
correction_prefix = "gec: "
|
| 42 |
+
input_sentence = correction_prefix + input_sentence
|
| 43 |
+
input_ids = correction_tokenizer.encode(input_sentence, return_tensors='pt')
|
| 44 |
+
input_ids = input_ids.to(device)
|
| 45 |
+
|
| 46 |
+
preds = correction_model.generate(
|
| 47 |
+
input_ids,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
max_length=128,
|
| 50 |
+
top_k=50,
|
| 51 |
+
top_p=0.95,
|
| 52 |
+
early_stopping=True,
|
| 53 |
+
num_return_sequences=max_candidates)
|
| 54 |
+
|
| 55 |
+
corrected = set()
|
| 56 |
+
for pred in preds:
|
| 57 |
+
corrected.add(correction_tokenizer.decode(pred, skip_special_tokens=True).strip())
|
| 58 |
+
|
| 59 |
+
corrected = list(corrected)
|
| 60 |
+
return (corrected[0], 0) #Corrected Sentence, Dummy score
|