jmartinezot
commited on
Commit
•
5a827da
1
Parent(s):
a558214
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import open3d as o3d
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from gradio.components import File, Slider, Image, Dataframe, Model3D
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
def point_cloud_to_image(point_cloud):
|
10 |
+
# Create Open3D visualization object
|
11 |
+
vis = o3d.visualization.Visualizer()
|
12 |
+
vis.create_window()
|
13 |
+
vis.add_geometry(point_cloud)
|
14 |
+
|
15 |
+
# Render the visualization and get the image
|
16 |
+
vis.poll_events()
|
17 |
+
vis.update_renderer()
|
18 |
+
img = vis.capture_screen_float_buffer()
|
19 |
+
|
20 |
+
# Convert image to PIL Image format
|
21 |
+
pil_img = Image.fromarray(np.uint8(np.asarray(img)*255))
|
22 |
+
|
23 |
+
return pil_img
|
24 |
+
|
25 |
+
def create_file_mesh_from_pcd(pcd):
|
26 |
+
|
27 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".obj", delete=False)
|
28 |
+
file_path = temp_file.name
|
29 |
+
temp_file.close()
|
30 |
+
|
31 |
+
alpha = 2
|
32 |
+
# print(f"alpha={alpha:.3f}")
|
33 |
+
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha)
|
34 |
+
mesh.compute_vertex_normals()
|
35 |
+
o3d.io.write_triangle_mesh(file_path, mesh, write_triangle_uvs=True)
|
36 |
+
return file_path
|
37 |
+
|
38 |
+
def plane_detection(pointcloud_path, voxel_size=0.05, distance_threshold=0.01, num_iterations=1000):
|
39 |
+
# Load point cloud from file
|
40 |
+
pcd = o3d.io.read_point_cloud(pointcloud_path.name)
|
41 |
+
|
42 |
+
# Downsample the point cloud to reduce computational load
|
43 |
+
pcd = pcd.voxel_down_sample(voxel_size=voxel_size)
|
44 |
+
|
45 |
+
# Find plane using RANSAC algorithm
|
46 |
+
plane_model, inliers = pcd.segment_plane(distance_threshold=distance_threshold,
|
47 |
+
ransac_n=3,
|
48 |
+
num_iterations=num_iterations)
|
49 |
+
|
50 |
+
# Get inlier and outlier point cloud
|
51 |
+
inlier_cloud = pcd.select_by_index(inliers)
|
52 |
+
outlier_cloud = pcd.select_by_index(inliers, invert=True)
|
53 |
+
# extract the coefficients of the plane
|
54 |
+
a, b, c, d = plane_model
|
55 |
+
plane_model = np.array([[a], [b], [c], [d]])
|
56 |
+
df = pd.DataFrame(plane_model.reshape(1, 4), columns=["a", "b", "c", "d"])
|
57 |
+
input_path = create_file_mesh_from_pcd(pcd)
|
58 |
+
inlier_path = create_file_mesh_from_pcd(inlier_cloud)
|
59 |
+
outlier_path = create_file_mesh_from_pcd(outlier_cloud)
|
60 |
+
# Return inlier point cloud, outlier point cloud, and plane model
|
61 |
+
# return point_cloud_to_image(inlier_cloud), point_cloud_to_image(outlier_cloud), df
|
62 |
+
return input_path, inlier_path, outlier_path, df
|
63 |
+
|
64 |
+
outputs = [
|
65 |
+
# show pcd inlier point cloud
|
66 |
+
Model3D(label="Input Cloud", clear_color=[1.0, 1.0, 1.0, 1.0]),
|
67 |
+
# show pcd inlier point cloud
|
68 |
+
Model3D(label="Inlier Cloud", clear_color=[1.0, 1.0, 1.0, 1.0]),
|
69 |
+
# show pcd outlier point cloud
|
70 |
+
Model3D(label="Outlier Cloud", clear_color=[1.0, 1.0, 1.0, 1.0]),
|
71 |
+
# show the centroids and counts, which is a numpy array
|
72 |
+
Dataframe(label="Coefficients of the plane model", type="pandas")
|
73 |
+
]
|
74 |
+
|
75 |
+
# Create Gradio interface
|
76 |
+
iface = gr.Interface(plane_detection,
|
77 |
+
inputs=[
|
78 |
+
File(label="Point cloud file (.ply or .pcd format)"),
|
79 |
+
Slider(label="Voxel size", minimum=1, maximum=50, step=1, value=2),
|
80 |
+
Slider(label="Distance threshold", minimum=0.5, maximum=50, step=0.5, value=5),
|
81 |
+
Slider(label="Number of iterations", minimum=1, maximum=10000, step=1, value=100)
|
82 |
+
],
|
83 |
+
outputs=outputs,
|
84 |
+
title="Plane Detection using RANSAC",
|
85 |
+
description="This app takes as input a point cloud file (.ply or .pcd format), voxel size, distance threshold, and number of iterations, finds a plane using RANSAC algorithm, displays the inlier and outlier point clouds, and returns the inlier point cloud, outlier point cloud, and the plane model.",
|
86 |
+
allow_flagging="never"
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
# Launch the interface
|
91 |
+
iface.launch()
|