jmartin233's picture
more tokens
87213b5
raw
history blame
1.77 kB
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"jmartin233/bloom-1b7-lora-reading-comprehension"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_8bit=False,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(person, location, grammar, level):
batch = tokenizer(f"""
Below is a set of requirements for a short passage of English. Please write a passage that meets these requirements:
### Requirements:
person: {person}
location: {location}.
grammar: {grammar}
level: {level}
### Passage:
Passage:""",
return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=100)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=2, label="Someone's name"),
gr.inputs.Textbox(lines=2, label="A location they might visit"),
gr.inputs.Textbox(lines=2, label="A type of grammar to use"),
gr.inputs.Textbox(lines=2, label="The level of English to use (beginner, intermediate, advanced))"),
],
gr.outputs.Textbox(label="Passage"),
title="Reading Comprehension",
description="A generative model that generates simple texts for testing reading comprehension.",
).launch()