Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import glob | |
import time | |
import tqdm | |
import torch | |
import torchcrepe | |
import numpy as np | |
import concurrent.futures | |
import multiprocessing as mp | |
import json | |
import shutil | |
from distutils.util import strtobool | |
now_dir = os.getcwd() | |
sys.path.append(os.path.join(now_dir)) | |
# Zluda hijack | |
import rvc.lib.zluda | |
from rvc.lib.utils import load_audio, load_embedding | |
from rvc.train.extract.preparing_files import generate_config, generate_filelist | |
from rvc.lib.predictors.RMVPE import RMVPE0Predictor | |
from rvc.configs.config import Config | |
# Load config | |
config = Config() | |
mp.set_start_method("spawn", force=True) | |
class FeatureInput: | |
"""Class for F0 extraction.""" | |
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"): | |
self.fs = sample_rate | |
self.hop = hop_size | |
self.f0_bin = 256 | |
self.f0_max = 1100.0 | |
self.f0_min = 50.0 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
self.device = device | |
self.model_rmvpe = None | |
def compute_f0(self, np_arr, f0_method, hop_length): | |
"""Extract F0 using the specified method.""" | |
if f0_method == "crepe": | |
return self.get_crepe(np_arr, hop_length) | |
elif f0_method == "rmvpe": | |
return self.model_rmvpe.infer_from_audio(np_arr, thred=0.03) | |
else: | |
raise ValueError(f"Unknown F0 method: {f0_method}") | |
def get_crepe(self, x, hop_length): | |
"""Extract F0 using CREPE.""" | |
audio = torch.from_numpy(x.astype(np.float32)).to(self.device) | |
audio /= torch.quantile(torch.abs(audio), 0.999) | |
audio = audio.unsqueeze(0) | |
pitch = torchcrepe.predict( | |
audio, | |
self.fs, | |
hop_length, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=hop_length * 2, | |
device=audio.device, | |
pad=True, | |
) | |
source = pitch.squeeze(0).cpu().float().numpy() | |
source[source < 0.001] = np.nan | |
target = np.interp( | |
np.arange(0, len(source) * (x.size // self.hop), len(source)) | |
/ (x.size // self.hop), | |
np.arange(0, len(source)), | |
source, | |
) | |
return np.nan_to_num(target) | |
def coarse_f0(self, f0): | |
"""Convert F0 to coarse F0.""" | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel = np.clip( | |
(f0_mel - self.f0_mel_min) | |
* (self.f0_bin - 2) | |
/ (self.f0_mel_max - self.f0_mel_min) | |
+ 1, | |
1, | |
self.f0_bin - 1, | |
) | |
return np.rint(f0_mel).astype(int) | |
def process_file(self, file_info, f0_method, hop_length): | |
"""Process a single audio file for F0 extraction.""" | |
inp_path, opt_path1, opt_path2, _ = file_info | |
if os.path.exists(opt_path1) and os.path.exists(opt_path2): | |
return | |
try: | |
np_arr = load_audio(inp_path, 16000) | |
feature_pit = self.compute_f0(np_arr, f0_method, hop_length) | |
np.save(opt_path2, feature_pit, allow_pickle=False) | |
coarse_pit = self.coarse_f0(feature_pit) | |
np.save(opt_path1, coarse_pit, allow_pickle=False) | |
except Exception as error: | |
print( | |
f"An error occurred extracting file {inp_path} on {self.device}: {error}" | |
) | |
def process_files( | |
self, files, f0_method, hop_length, device_num, device, n_threads | |
): | |
"""Process multiple files.""" | |
self.device = device | |
if f0_method == "rmvpe": | |
self.model_rmvpe = RMVPE0Predictor( | |
os.path.join("rvc", "models", "predictors", "rmvpe.pt"), | |
is_half=False, | |
device=device, | |
) | |
else: | |
n_threads = 1 | |
n_threads = 1 if n_threads == 0 else n_threads | |
def process_file_wrapper(file_info): | |
self.process_file(file_info, f0_method, hop_length) | |
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar: | |
# using multi-threading | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=n_threads | |
) as executor: | |
futures = [ | |
executor.submit(process_file_wrapper, file_info) | |
for file_info in files | |
] | |
for future in concurrent.futures.as_completed(futures): | |
pbar.update(1) | |
def run_pitch_extraction(files, devices, f0_method, hop_length, num_processes): | |
devices_str = ", ".join(devices) | |
print( | |
f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..." | |
) | |
start_time = time.time() | |
fe = FeatureInput() | |
# split the task between devices | |
ps = [] | |
num_devices = len(devices) | |
for i, device in enumerate(devices): | |
p = mp.Process( | |
target=fe.process_files, | |
args=( | |
files[i::num_devices], | |
f0_method, | |
hop_length, | |
i, | |
device, | |
num_processes // num_devices, | |
), | |
) | |
ps.append(p) | |
p.start() | |
for i, device in enumerate(devices): | |
ps[i].join() | |
elapsed_time = time.time() - start_time | |
print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.") | |
def process_file_embedding( | |
files, version, embedder_model, embedder_model_custom, device_num, device, n_threads | |
): | |
dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32 | |
model = load_embedding(embedder_model, embedder_model_custom).to(dtype).to(device) | |
n_threads = 1 if n_threads == 0 else n_threads | |
def process_file_embedding_wrapper(file_info): | |
wav_file_path, _, _, out_file_path = file_info | |
if os.path.exists(out_file_path): | |
return | |
feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(dtype).to(device) | |
feats = feats.view(1, -1) | |
with torch.no_grad(): | |
feats = model(feats)["last_hidden_state"] | |
feats = ( | |
model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats | |
) | |
feats = feats.squeeze(0).float().cpu().numpy() | |
if not np.isnan(feats).any(): | |
np.save(out_file_path, feats, allow_pickle=False) | |
else: | |
print(f"{file} contains NaN values and will be skipped.") | |
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar: | |
# using multi-threading | |
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor: | |
futures = [ | |
executor.submit(process_file_embedding_wrapper, file_info) | |
for file_info in files | |
] | |
for future in concurrent.futures.as_completed(futures): | |
pbar.update(1) | |
def run_embedding_extraction( | |
files, devices, version, embedder_model, embedder_model_custom | |
): | |
start_time = time.time() | |
devices_str = ", ".join(devices) | |
print( | |
f"Starting embedding extraction with {num_processes} cores on {devices_str}..." | |
) | |
# split the task between devices | |
ps = [] | |
num_devices = len(devices) | |
for i, device in enumerate(devices): | |
p = mp.Process( | |
target=process_file_embedding, | |
args=( | |
files[i::num_devices], | |
version, | |
embedder_model, | |
embedder_model_custom, | |
i, | |
device, | |
num_processes // num_devices, | |
), | |
) | |
ps.append(p) | |
p.start() | |
for i, device in enumerate(devices): | |
ps[i].join() | |
elapsed_time = time.time() - start_time | |
print(f"Embedding extraction completed in {elapsed_time:.2f} seconds.") | |
if __name__ == "__main__": | |
exp_dir = sys.argv[1] | |
f0_method = sys.argv[2] | |
hop_length = int(sys.argv[3]) | |
num_processes = int(sys.argv[4]) | |
gpus = sys.argv[5] | |
version = sys.argv[6] | |
sample_rate = sys.argv[7] | |
embedder_model = sys.argv[8] | |
embedder_model_custom = sys.argv[9] if len(sys.argv) > 10 else None | |
# prep | |
wav_path = os.path.join(exp_dir, "sliced_audios_16k") | |
os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True) | |
os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True) | |
os.makedirs(os.path.join(exp_dir, version + "_extracted"), exist_ok=True) | |
# write to model_info.json | |
chosen_embedder_model = ( | |
embedder_model_custom if embedder_model == "custom" else embedder_model | |
) | |
file_path = os.path.join(exp_dir, "model_info.json") | |
if os.path.exists(file_path): | |
with open(file_path, "r") as f: | |
data = json.load(f) | |
else: | |
data = {} | |
data.update( | |
{ | |
"embedder_model": chosen_embedder_model, | |
} | |
) | |
with open(file_path, "w") as f: | |
json.dump(data, f, indent=4) | |
files = [] | |
for file in glob.glob(os.path.join(wav_path, "*.wav")): | |
file_name = os.path.basename(file) | |
file_info = [ | |
file, # full path to sliced 16k wav | |
os.path.join(exp_dir, "f0", file_name + ".npy"), | |
os.path.join(exp_dir, "f0_voiced", file_name + ".npy"), | |
os.path.join( | |
exp_dir, version + "_extracted", file_name.replace("wav", "npy") | |
), | |
] | |
files.append(file_info) | |
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")] | |
# Run Pitch Extraction | |
run_pitch_extraction(files, devices, f0_method, hop_length, num_processes) | |
# Run Embedding Extraction | |
run_embedding_extraction( | |
files, devices, version, embedder_model, embedder_model_custom | |
) | |
# Run Preparing Files | |
generate_config(version, sample_rate, exp_dir) | |
generate_filelist(exp_dir, version, sample_rate) | |