Jesus Lopez
feat: applio
a8c39f5
raw
history blame
8.37 kB
from typing import Optional
import torch
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.commons import get_padding, init_weights
LRELU_SLOPE = 0.1
# Helper functions
def create_conv1d_layer(channels, kernel_size, dilation):
return weight_norm(
torch.nn.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation,
padding=get_padding(kernel_size, dilation),
)
)
def apply_mask(tensor, mask):
return tensor * mask if mask is not None else tensor
class ResBlockBase(torch.nn.Module):
def __init__(self, channels, kernel_size, dilations):
super(ResBlockBase, self).__init__()
self.convs1 = torch.nn.ModuleList(
[create_conv1d_layer(channels, kernel_size, d) for d in dilations]
)
self.convs1.apply(init_weights)
self.convs2 = torch.nn.ModuleList(
[create_conv1d_layer(channels, kernel_size, 1) for _ in dilations]
)
self.convs2.apply(init_weights)
def forward(self, x, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
xt = apply_mask(xt, x_mask)
xt = torch.nn.functional.leaky_relu(c1(xt), LRELU_SLOPE)
xt = apply_mask(xt, x_mask)
xt = c2(xt)
x = xt + x
return apply_mask(x, x_mask)
def remove_weight_norm(self):
for conv in self.convs1 + self.convs2:
remove_weight_norm(conv)
class ResBlock1(ResBlockBase):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__(channels, kernel_size, dilation)
class ResBlock2(ResBlockBase):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__(channels, kernel_size, dilation)
class Flip(torch.nn.Module):
"""Flip module for flow-based models.
This module flips the input along the time dimension.
"""
def forward(self, x, *args, reverse=False, **kwargs):
"""Forward pass.
Args:
x (torch.Tensor): Input tensor.
reverse (bool, optional): Whether to reverse the operation. Defaults to False.
"""
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ResidualCouplingBlock(torch.nn.Module):
"""Residual Coupling Block for normalizing flow.
Args:
channels (int): Number of channels in the input.
hidden_channels (int): Number of hidden channels in the coupling layer.
kernel_size (int): Kernel size of the convolutional layers.
dilation_rate (int): Dilation rate of the convolutional layers.
n_layers (int): Number of layers in the coupling layer.
n_flows (int, optional): Number of coupling layers in the block. Defaults to 4.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
"""
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0,
):
super(ResidualCouplingBlock, self).__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = torch.nn.ModuleList()
for i in range(n_flows):
self.flows.append(
ResidualCouplingLayer(
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
mean_only=True,
)
)
self.flows.append(Flip())
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
g: Optional[torch.Tensor] = None,
reverse: bool = False,
):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow.forward(x, x_mask, g=g, reverse=reverse)
return x
def remove_weight_norm(self):
"""Removes weight normalization from the coupling layers."""
for i in range(self.n_flows):
self.flows[i * 2].remove_weight_norm()
def __prepare_scriptable__(self):
"""Prepares the module for scripting."""
for i in range(self.n_flows):
for hook in self.flows[i * 2]._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.flows[i * 2])
return self
class ResidualCouplingLayer(torch.nn.Module):
"""Residual coupling layer for flow-based models.
Args:
channels (int): Number of channels.
hidden_channels (int): Number of hidden channels.
kernel_size (int): Size of the convolutional kernel.
dilation_rate (int): Dilation rate of the convolution.
n_layers (int): Number of convolutional layers.
p_dropout (float, optional): Dropout probability. Defaults to 0.
gin_channels (int, optional): Number of conditioning channels. Defaults to 0.
mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False.
"""
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=0,
gin_channels=0,
mean_only=False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WaveNet(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=p_dropout,
gin_channels=gin_channels,
)
self.post = torch.nn.Conv1d(
hidden_channels, self.half_channels * (2 - mean_only), 1
)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
"""Forward pass.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, channels, time_steps).
x_mask (torch.Tensor): Mask tensor of shape (batch_size, 1, time_steps).
g (torch.Tensor, optional): Conditioning tensor of shape (batch_size, gin_channels, time_steps).
Defaults to None.
reverse (bool, optional): Whether to reverse the operation. Defaults to False.
"""
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
def remove_weight_norm(self):
"""Remove weight normalization from the module."""
self.enc.remove_weight_norm()