Spaces:
Runtime error
Runtime error
POC using hard-coded wheel
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app.py +51 -143
- gradio_rerun-0.0.2-py3-none-any.whl +3 -0
- requirements.txt +3 -6
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.whl filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Rerun Streaming Poc
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Rerun Streaming Poc
|
3 |
+
emoji: 🏞️
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,146 +1,54 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
-
|
23 |
-
if randomize_seed:
|
24 |
-
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
-
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
-
|
140 |
-
run_button.click(
|
141 |
-
fn = infer,
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import rerun as rr
|
2 |
+
import rerun.blueprint as rrb
|
3 |
import gradio as gr
|
4 |
+
from gradio_rerun import Rerun
|
5 |
+
import time
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
|
9 |
+
@rr.thread_local_stream("rerun_example_streaming_blur")
|
10 |
+
def repeated_blur(img):
|
11 |
+
stream = rr.binary_stream()
|
12 |
+
|
13 |
+
blueprint = rrb.Blueprint(
|
14 |
+
rrb.Horizontal(
|
15 |
+
rrb.Spatial2DView(origin="image/original"),
|
16 |
+
rrb.Spatial2DView(origin="image/blurred"),
|
17 |
+
),
|
18 |
+
collapse_panels=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
|
21 |
+
rr.send_blueprint(blueprint)
|
22 |
+
|
23 |
+
rr.set_time_sequence("iteration", 0)
|
24 |
+
|
25 |
+
rr.log("image/original", rr.Image(img))
|
26 |
+
yield stream.read()
|
27 |
+
|
28 |
+
blur = img
|
29 |
+
|
30 |
+
for i in range(100):
|
31 |
+
rr.set_time_sequence("iteration", i)
|
32 |
+
|
33 |
+
# Pretend blurring takes a while
|
34 |
+
time.sleep(0.1)
|
35 |
+
blur = cv2.GaussianBlur(blur, (5, 5), 0)
|
36 |
+
|
37 |
+
rr.log("image/blurred", rr.Image(blur))
|
38 |
+
|
39 |
+
yield stream.read()
|
40 |
+
|
41 |
+
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
with gr.Row():
|
44 |
+
img = gr.Image(interactive=True, label="Image")
|
45 |
+
with gr.Column():
|
46 |
+
blur = gr.Button("Repeated Blur")
|
47 |
+
with gr.Row():
|
48 |
+
viewer = Rerun(streaming=True)
|
49 |
+
|
50 |
+
blur.click(repeated_blur, inputs=[img], outputs=[viewer])
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
demo.launch()
|
gradio_rerun-0.0.2-py3-none-any.whl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc6d4f7e92e167b97d6be7d613c3427a975c9a0553f19fe2535e3fd9fc7a9a71
|
3 |
+
size 10247004
|
requirements.txt
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
torch
|
5 |
-
transformers
|
6 |
-
xformers
|
|
|
1 |
+
opencv-python
|
2 |
+
rerun-sdk==0.16
|
3 |
+
./gradio_rerun-0.0.2-py3-none-any.whl
|
|
|
|
|
|