jleibs commited on
Commit
3b47f00
1 Parent(s): 500c486

POC using hard-coded wheel

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +1 -1
  3. app.py +51 -143
  4. gradio_rerun-0.0.2-py3-none-any.whl +3 -0
  5. requirements.txt +3 -6
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.whl filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Rerun Streaming Poc
3
- emoji: 🖼
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
 
1
  ---
2
  title: Rerun Streaming Poc
3
+ emoji: 🏞️
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
app.py CHANGED
@@ -1,146 +1,54 @@
 
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
-
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import rerun as rr
2
+ import rerun.blueprint as rrb
3
  import gradio as gr
4
+ from gradio_rerun import Rerun
5
+ import time
6
+ import cv2
7
+
8
+
9
+ @rr.thread_local_stream("rerun_example_streaming_blur")
10
+ def repeated_blur(img):
11
+ stream = rr.binary_stream()
12
+
13
+ blueprint = rrb.Blueprint(
14
+ rrb.Horizontal(
15
+ rrb.Spatial2DView(origin="image/original"),
16
+ rrb.Spatial2DView(origin="image/blurred"),
17
+ ),
18
+ collapse_panels=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  )
20
 
21
+ rr.send_blueprint(blueprint)
22
+
23
+ rr.set_time_sequence("iteration", 0)
24
+
25
+ rr.log("image/original", rr.Image(img))
26
+ yield stream.read()
27
+
28
+ blur = img
29
+
30
+ for i in range(100):
31
+ rr.set_time_sequence("iteration", i)
32
+
33
+ # Pretend blurring takes a while
34
+ time.sleep(0.1)
35
+ blur = cv2.GaussianBlur(blur, (5, 5), 0)
36
+
37
+ rr.log("image/blurred", rr.Image(blur))
38
+
39
+ yield stream.read()
40
+
41
+
42
+ with gr.Blocks() as demo:
43
+ with gr.Row():
44
+ img = gr.Image(interactive=True, label="Image")
45
+ with gr.Column():
46
+ blur = gr.Button("Repeated Blur")
47
+ with gr.Row():
48
+ viewer = Rerun(streaming=True)
49
+
50
+ blur.click(repeated_blur, inputs=[img], outputs=[viewer])
51
+
52
+
53
+ if __name__ == "__main__":
54
+ demo.launch()
gradio_rerun-0.0.2-py3-none-any.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc6d4f7e92e167b97d6be7d613c3427a975c9a0553f19fe2535e3fd9fc7a9a71
3
+ size 10247004
requirements.txt CHANGED
@@ -1,6 +1,3 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers
 
1
+ opencv-python
2
+ rerun-sdk==0.16
3
+ ./gradio_rerun-0.0.2-py3-none-any.whl