Spaces:
Runtime error
Runtime error
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
# import cv2 | |
import numpy as np | |
from PIL import Image | |
import math | |
class Erosion2d(nn.Layer): | |
""" | |
Erosion2d | |
""" | |
def __init__(self, m=1): | |
super(Erosion2d, self).__init__() | |
self.m = m | |
self.pad = [m, m, m, m] | |
def forward(self, x): | |
batch_size, c, h, w = x.shape | |
x_pad = F.pad(x, pad=self.pad, mode='constant', value=1e9) | |
channel = nn.functional.unfold(x_pad, 2 * self.m + 1, strides=1, paddings=0).reshape([batch_size, c, -1, h, w]) | |
result = paddle.min(channel, axis=2) | |
return result | |
class Dilation2d(nn.Layer): | |
""" | |
Dilation2d | |
""" | |
def __init__(self, m=1): | |
super(Dilation2d, self).__init__() | |
self.m = m | |
self.pad = [m, m, m, m] | |
def forward(self, x): | |
batch_size, c, h, w = x.shape | |
x_pad = F.pad(x, pad=self.pad, mode='constant', value=-1e9) | |
channel = nn.functional.unfold(x_pad, 2 * self.m + 1, strides=1, paddings=0).reshape([batch_size, c, -1, h, w]) | |
result = paddle.max(channel, axis=2) | |
return result | |
def param2stroke(param, H, W, meta_brushes): | |
""" | |
param2stroke | |
""" | |
b = param.shape[0] | |
param_list = paddle.split(param, 8, axis=1) | |
x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]] | |
sin_theta = paddle.sin(math.pi * theta) | |
cos_theta = paddle.cos(math.pi * theta) | |
index = paddle.full((b,), -1, dtype='int64').numpy() | |
index[(h > w).numpy()] = 0 | |
index[(h <= w).numpy()] = 1 | |
meta_brushes_resize = F.interpolate(meta_brushes, (H, W)).numpy() | |
brush = paddle.to_tensor(meta_brushes_resize[index]) | |
warp_00 = cos_theta / w | |
warp_01 = sin_theta * H / (W * w) | |
warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w) | |
warp_10 = -sin_theta * W / (H * h) | |
warp_11 = cos_theta / h | |
warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h) | |
warp_0 = paddle.stack([warp_00, warp_01, warp_02], axis=1) | |
warp_1 = paddle.stack([warp_10, warp_11, warp_12], axis=1) | |
warp = paddle.stack([warp_0, warp_1], axis=1) | |
grid = nn.functional.affine_grid(warp, [b, 3, H, W]) # paddle和torch默认值是反过来的 | |
brush = nn.functional.grid_sample(brush, grid) | |
return brush | |
def read_img(img_path, img_type='RGB', h=None, w=None): | |
""" | |
read img | |
""" | |
img = Image.open(img_path).convert(img_type) | |
if h is not None and w is not None: | |
img = img.resize((w, h), resample=Image.NEAREST) | |
img = np.array(img) | |
if img.ndim == 2: | |
img = np.expand_dims(img, axis=-1) | |
img = img.transpose((2, 0, 1)) | |
img = paddle.to_tensor(img).unsqueeze(0).astype('float32') / 255. | |
return img | |
# def preprocess(img, w=512, h=512): | |
# image = cv2.resize(img, (w, h), cv2.INTER_NEAREST) | |
# image = image.transpose((2, 0, 1)) | |
# image = paddle.to_tensor(image).unsqueeze(0).astype('float32') / 255. | |
# return image | |
def pad(img, H, W): | |
b, c, h, w = img.shape | |
pad_h = (H - h) // 2 | |
pad_w = (W - w) // 2 | |
remainder_h = (H - h) % 2 | |
remainder_w = (W - w) % 2 | |
expand_img = nn.functional.pad(img, [pad_w, pad_w + remainder_w, | |
pad_h, pad_h + remainder_h]) | |
return expand_img | |