demo-artist-classifier / gradcam_utils.py
jaekookang
first upload
af72b72
raw
history blame
4.77 kB
'''
Grad-CAM visualization utilities
- Based on https://keras.io/examples/vision/grad_cam/
---
- 2021-12-18 jkang first created
- 2022-01-16
- copied from https://huggingface.co/spaces/jkang/demo-gradcam-imagenet/blob/main/utils.py
- updated for artis/trend classifier
'''
import matplotlib.cm as cm
import os
import re
from glob import glob
import numpy as np
import tensorflow as tf
tfk = tf.keras
K = tfk.backend
# Disable GPU for testing
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
def get_imagenet_classes():
'''Retrieve all 1000 imagenet classes/labels as dictionaries'''
classes = tfk.applications.imagenet_utils.decode_predictions(
np.expand_dims(np.arange(1000), 0), top=1000
)
idx2lab = {cla[2]: cla[1] for cla in classes[0]}
lab2idx = {idx2lab[idx]: idx for idx in idx2lab}
return idx2lab, lab2idx
def search_by_name(str_part):
'''Search imagenet class by partial matching string'''
results = [key for key in list(lab2idx.keys()) if re.search(str_part, key)]
if len(results) != 0:
return [(key, lab2idx[key]) for key in results]
else:
return []
def get_xception_model():
'''Get model to use'''
base_model = tfk.applications.xception.Xception
preprocessor = tfk.applications.xception.preprocess_input
decode_predictions = tfk.applications.xception.decode_predictions
last_conv_layer_name = "block14_sepconv2_act"
model = base_model(weights='imagenet')
grad_model = tfk.models.Model(
inputs=[model.inputs],
outputs=[model.get_layer(last_conv_layer_name).output,
model.output]
)
return model, grad_model, preprocessor, decode_predictions
def get_img_4d_array(image_file, image_size=(299, 299)):
'''Load image as 4d array'''
img = tfk.preprocessing.image.load_img(
image_file, target_size=image_size) # PIL obj
img_array = tfk.preprocessing.image.img_to_array(
img) # float32 numpy array
img_array = np.expand_dims(img_array, axis=0) # 3d -> 4d (1,299,299,3)
return img_array
def make_gradcam_heatmap(grad_model, img_array, pred_idx=None):
'''Generate heatmap to overlay with
- img_array: 4d numpy array
- pred_idx: eg. index out of 1000 imagenet classes
if None, argmax is chosen from prediction
'''
# Get gradient of pred class w.r.t. last conv activation
with tf.GradientTape() as tape:
last_conv_act, predictions = grad_model(img_array)
if pred_idx == None:
pred_idx = tf.argmax(predictions[0])
class_channel = predictions[:, pred_idx] # (1,1000) => (1,)
# d(class_channel/last_conv_act)
grads = tape.gradient(class_channel, last_conv_act)
pooled_grads = tf.reduce_mean(grads, axis=(
0, 1, 2)) # (1,10,10,2048) => (2048,)
# (10,10,2048) x (2048,1) => (10,10,1)
heatmap = last_conv_act[0] @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap) # (10,10)
# Normalize heatmap between 0 and 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap, pred_idx.numpy(), predictions.numpy().squeeze()
def align_image_with_heatmap(img_array, heatmap, alpha=0.3, cmap='jet'):
'''Align the image with gradcam heatmap
- img_array: 4d numpy array
- heatmap: output of `def make_gradcam_heatmap()` as 2d numpy array
'''
img_array = img_array.squeeze() # 4d => 3d
# Rescale to 0-255 range
heatmap_scaled = np.uint8(255 * heatmap)
img_array_scaled = np.uint8(255 * img_array)
colormap = cm.get_cmap(cmap)
colors = colormap(np.arange(256))[:, :3] # mapping RGB to heatmap
heatmap_colored = colors[heatmap_scaled] # ? still unclear
# Make RGB colorized heatmap
heatmap_colored = (tfk.preprocessing.image.array_to_img(heatmap_colored) # array => PIL
.resize((img_array.shape[1], img_array.shape[0])))
heatmap_colored = tfk.preprocessing.image.img_to_array(
heatmap_colored) # PIL => array
# Overlay image with heatmap
overlaid_img = heatmap_colored * alpha + img_array_scaled
overlaid_img = tfk.preprocessing.image.array_to_img(overlaid_img)
return overlaid_img
if __name__ == '__main__':
# Test GradCAM
examples = sorted(glob(os.path.join('examples', '*.jpg')))
idx2lab, lab2idx = get_imagenet_classes()
model, grad_model, preprocessor, decode_predictions = get_xception_model()
img_4d_array = get_img_4d_array(examples[0])
img_4d_array = preprocessor(img_4d_array)
heatmap = make_gradcam_heatmap(grad_model, img_4d_array, pred_idx=None)
img_pil = align_image_with_heatmap(
img_4d_array, heatmap, alpha=0.3, cmap='jet')
img_pil.save('test.jpg')
print('done')