Spaces:
Running
Running
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# Load CodeT5 model and tokenizer | |
tokenizer = T5Tokenizer.from_pretrained("Salesforce/codet5-base") | |
model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base") | |
# Function to explain code | |
def explain_code(code_snippet): | |
if not code_snippet.strip(): | |
return "β Please enter some code." | |
input_text = f"summarize: {code_snippet.strip()}" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model.generate(input_ids, max_length=150, num_beams=4, early_stopping=True) | |
explanation = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return explanation | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=explain_code, | |
inputs=gr.Textbox(lines=15, label="Paste your code here"), | |
outputs=gr.Textbox(label="Explanation"), | |
title="π§ Code Explainer using Hugging Face", | |
description="This tool uses Salesforce's CodeT5 to convert your code into a human-readable explanation. Works on CPU!", | |
theme="default" | |
) | |
demo.launch() | |